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Conda
Environment and package management for Python
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Overview
Packages and environments

� Packages
� Python heavily relies on external packages (e.g., numpy, pandas, scikit-learn, …)
� many packages are under active development and are regularly updated

� Dependencies
� most packages rely on dependencies (other packages) to implement their functionality
� different package versions may require different dependency versions 

� Environments
� environment is a (virtual) machine that has a set of specific packages installed
� single computer can have multiple environments
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Overview
Why we need environment/package management?

� Common issues during code development
� projects require different Python and/or package versions
� packages require dependencies with conflicting versions
� code that was working yesterday fails today 
� code produces different results on different machines

� Environment and package managers helps with these issues
� ability to set up environments with custom Python / package versions for different projects
� resolving conflicts between dependencies
� making projects self-contained and reproducible 
� all dependencies can be written in a single requirements file for sharing



28

Overview
What is Conda?

� Free and open source package and environment management system
� Easy to use with command line on Windows / macOS / Linux
� Supports multiple programming languages
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Background
Integrated development environments (IDEs)

� Web-based IDEs: notebook environments connected to a local/cloud machine
� e.g., Google Colab, Kaggle Notebooks, Amazon Sagemaker
� externally curated set of pre-installed packages 

− Python and package versions are managed externally
− still need to install missing packages manually
− using Conda is difficult (but possible)

� Software-based IDEs: programming software installed on a local/cloud machine 
� e.g., jupyterlab, Visual Studio Code, PyCharm
� using Conda enables custom environments with desired packages

− ability to specify package versions yourself
− different environments for different projects
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Background
Integrated development environments (IDEs)

� Web-based IDEs: notebook environments connected to a local/cloud machine
� e.g., Google Colab, Kaggle Notebooks, Amazon Sagemaker
� externally curated set of pre-installed packages 

− Python and package versions are managed externally
− still need to install missing packages manually
− using Conda is difficult (but possible)

� good fit for short-term one-person projects in a single notebook

� Software-based IDEs: programming software installed on a local/cloud machine 
� e.g., jupyterlab, Visual Studio Code, PyCharm
� using Conda enables custom environments with desired packages

− ability to specify package versions yourself
− different environments for different projects 

� good fit for collaborative development with multiple notebook/script files
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Installing Conda

� Download & install the latest version
� Miniconda: https://docs.conda.io/en/latest/miniconda.html
� Anaconda: https://www.anaconda.com/download/

� Miniconda vs anaconda
� Anaconda has popular packages pre-installed (3 Gb)
� Miniconda starts from scratch and lets you install everything manually

https://docs.conda.io/en/latest/miniconda.html
https://www.anaconda.com/download/
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Working in Conda
Basics

� Launching a command line
� Windows: Anaconda prompt (installed with Conda)
� macOS / Linux: Terminal (pre-installed with OS)

� Using commands to interact with Conda

machine name

current directory

Example Terminal session
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Working in Conda
Managing Conda

� Check conda version
� $ conda --version

� Update conda
� $ conda update conda

� Proceed ([y]/n)? y

� Uninstall conda
� $ conda install anaconda-clean

� $ anaconda-clean --yes

output: Conda version

user command:
checking version
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Working in Conda
Managing environments

� Create new environment
� $ conda create --name <env_name> python=3.9 pandas numpy

� Proceed ([y]/n)? y

� See list of environments
� $ conda info –envs

� Delete environment
� $ conda remove --name env_name --all

� Proceed ([y]/n)? y

Environment 
name

Python 
version

Space-separated 
list of packages
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Working in Conda
Switching environments

� Environment selection
� base environment is active by default
� user can switch between environments
� check (env_name)indication in Terminal 

� Activate existing environment
� $ conda activate env_name

� Return to base environment
� $ conda deactivate 

current environment indicator

activating  “apa” environment

updated environment indicator
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Working in Conda
Managing packages [1/2]

� Make sure the desired environment is active

� Check what packages are installed
� $ conda list

� Search for available package versions
� $ conda search package_name

� Install package(s)
� $ conda install package_name

� $ conda install package_name=version

� Install package(s) from file
� $ conda install --file requirements.txt

Example requirements.txt
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Working in Conda
Managing packages [2/2]

� What if a package is not available in Conda?
� i.e.,  $ conda search package_name does not display desired package/version 
� use Google to find the package GitHub page or documentation
� look for “installation” to find instructions

� Most common ways to install a package (from more to less preferred)
� install with Conda (official Conda repository):

− $ conda install package_name

� install with Conda-forge (community-led Conda repositories)
− $ conda install -c conda-forge package_name

� install with pip (standard Python package manager)
− $ pip install package_name
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Working in Conda
Typical Conda workflow with Jupyter

� Launch Terminal / Anaconda Prompt
� Create environment with relevant packages [first time only]
� $ conda create --name apa pyhton=3.9 jupyterlab pandas numpy

� Activate environment
� $ conda activate apa

� Launch Jupyter from command line
� $ jupyter lab

� Close Jupyter with a command line shortcut
� ctrl + c

� Proceed ([y]/n)? y

� Deactivate environment and quit Terminal

activating  “apa” environment
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Working in Conda
Typical Conda workflow with Jupyter

current environment indicator

activating  “apa” environment

updated environment indicator

Demo
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Working in Conda
Summary

� Conda is a powerful environment / package manager 
� set up environments with custom Python / package versions
� helps to make projects self-contained and reproducible 
� all dependencies can be written in a single requirements file for sharing 

� Conda is simple to install and use
� supported on Windows / macOS / Linux
� knowing ~10 Conda commands is enough for most applications
� more advanced functionality is available (see documentation)

� More materials
� official documentation: https://conda.io/projects/conda/en/latest/index.html
� PDF cheat sheet: https://conda.io/projects/conda/en/latest/user-guide/cheatsheet.html

https://conda.io/projects/conda/en/latest/index.html
https://conda.io/projects/conda/en/latest/user-guide/cheatsheet.html
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Thank you for your attention!

Stefan Lessmann

Chair of Information Systems
School of Business and Economics
Humboldt-University of  Berlin, Germany

Tel. +49.30.2093.99540 
Fax. +49.30.2093.99541

stefan.lessmann@hu-berlin.de
http://bit.ly/hu-wi

www.hu-berlin.de
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