
1

Applied Predictive Analytics

Infrastructure
S. Lessmann, N. Kozodoi, A. Zharova

25

Conda
Environment and package management for Python

26

Overview
Packages and environments

� Packages
� Python heavily relies on external packages (e.g., numpy, pandas, scikit-learn, …)
� many packages are under active development and are regularly updated

� Dependencies
� most packages rely on dependencies (other packages) to implement their functionality
� different package versions may require different dependency versions

� Environments
� environment is a (virtual) machine that has a set of specific packages installed
� single computer can have multiple environments

27

Overview
Why we need environment/package management?

� Common issues during code development
� projects require different Python and/or package versions
� packages require dependencies with conflicting versions
� code that was working yesterday fails today
� code produces different results on different machines

� Environment and package managers helps with these issues
� ability to set up environments with custom Python / package versions for different projects
� resolving conflicts between dependencies
� making projects self-contained and reproducible
� all dependencies can be written in a single requirements file for sharing

28

Overview
What is Conda?

� Free and open source package and environment management system
� Easy to use with command line on Windows / macOS / Linux
� Supports multiple programming languages

29

Background
Integrated development environments (IDEs)

� Web-based IDEs: notebook environments connected to a local/cloud machine
� e.g., Google Colab, Kaggle Notebooks, Amazon Sagemaker
� externally curated set of pre-installed packages

− Python and package versions are managed externally
− still need to install missing packages manually
− using Conda is difficult (but possible)

� Software-based IDEs: programming software installed on a local/cloud machine
� e.g., jupyterlab, Visual Studio Code, PyCharm
� using Conda enables custom environments with desired packages

− ability to specify package versions yourself
− different environments for different projects

30

Background
Integrated development environments (IDEs)

� Web-based IDEs: notebook environments connected to a local/cloud machine
� e.g., Google Colab, Kaggle Notebooks, Amazon Sagemaker
� externally curated set of pre-installed packages

− Python and package versions are managed externally
− still need to install missing packages manually
− using Conda is difficult (but possible)

� good fit for short-term one-person projects in a single notebook

� Software-based IDEs: programming software installed on a local/cloud machine
� e.g., jupyterlab, Visual Studio Code, PyCharm
� using Conda enables custom environments with desired packages

− ability to specify package versions yourself
− different environments for different projects

� good fit for collaborative development with multiple notebook/script files

31

Installing Conda

� Download & install the latest version
� Miniconda: https://docs.conda.io/en/latest/miniconda.html
� Anaconda: https://www.anaconda.com/download/

� Miniconda vs anaconda
� Anaconda has popular packages pre-installed (3 Gb)
� Miniconda starts from scratch and lets you install everything manually

https://docs.conda.io/en/latest/miniconda.html
https://www.anaconda.com/download/

32

Working in Conda
Basics

� Launching a command line
� Windows: Anaconda prompt (installed with Conda)
� macOS / Linux: Terminal (pre-installed with OS)

� Using commands to interact with Conda

machine name

current directory

Example Terminal session

33

Working in Conda
Managing Conda

� Check conda version
� $ conda --version

� Update conda
� $ conda update conda

� Proceed ([y]/n)? y

� Uninstall conda
� $ conda install anaconda-clean

� $ anaconda-clean --yes

output: Conda version

user command:
checking version

34

Working in Conda
Managing environments

� Create new environment
� $ conda create --name <env_name> python=3.9 pandas numpy

� Proceed ([y]/n)? y

� See list of environments
� $ conda info –envs

� Delete environment
� $ conda remove --name env_name --all

� Proceed ([y]/n)? y

Environment
name

Python
version

Space-separated
list of packages

35

Working in Conda
Switching environments

� Environment selection
� base environment is active by default
� user can switch between environments
� check (env_name)indication in Terminal

� Activate existing environment
� $ conda activate env_name

� Return to base environment
� $ conda deactivate

current environment indicator

activating “apa” environment

updated environment indicator

36

Working in Conda
Managing packages [1/2]

� Make sure the desired environment is active

� Check what packages are installed
� $ conda list

� Search for available package versions
� $ conda search package_name

� Install package(s)
� $ conda install package_name

� $ conda install package_name=version

� Install package(s) from file
� $ conda install --file requirements.txt

Example requirements.txt

37

Working in Conda
Managing packages [2/2]

� What if a package is not available in Conda?
� i.e., $ conda search package_name does not display desired package/version
� use Google to find the package GitHub page or documentation
� look for “installation” to find instructions

� Most common ways to install a package (from more to less preferred)
� install with Conda (official Conda repository):

− $ conda install package_name

� install with Conda-forge (community-led Conda repositories)
− $ conda install -c conda-forge package_name

� install with pip (standard Python package manager)
− $ pip install package_name

38

Working in Conda
Typical Conda workflow with Jupyter

� Launch Terminal / Anaconda Prompt
� Create environment with relevant packages [first time only]
� $ conda create --name apa pyhton=3.9 jupyterlab pandas numpy

� Activate environment
� $ conda activate apa

� Launch Jupyter from command line
� $ jupyter lab

� Close Jupyter with a command line shortcut
� ctrl + c

� Proceed ([y]/n)? y

� Deactivate environment and quit Terminal

activating “apa” environment

39

Working in Conda
Typical Conda workflow with Jupyter

current environment indicator

activating “apa” environment

updated environment indicator

Demo

40

Working in Conda
Summary

� Conda is a powerful environment / package manager
� set up environments with custom Python / package versions
� helps to make projects self-contained and reproducible
� all dependencies can be written in a single requirements file for sharing

� Conda is simple to install and use
� supported on Windows / macOS / Linux
� knowing ~10 Conda commands is enough for most applications
� more advanced functionality is available (see documentation)

� More materials
� official documentation: https://conda.io/projects/conda/en/latest/index.html
� PDF cheat sheet: https://conda.io/projects/conda/en/latest/user-guide/cheatsheet.html

https://conda.io/projects/conda/en/latest/index.html
https://conda.io/projects/conda/en/latest/user-guide/cheatsheet.html

44

Thank you for your attention!

Stefan Lessmann

Chair of Information Systems
School of Business and Economics
Humboldt-University of Berlin, Germany

Tel. +49.30.2093.99540
Fax. +49.30.2093.99541

stefan.lessmann@hu-berlin.de
http://bit.ly/hu-wi

www.hu-berlin.de

Ph
ot

o:
 H

ei
ke

 Z
ap

pe

	Applied Predictive Analytics��Infrastructure��S. Lessmann, N. Kozodoi, A. Zharova
	Agenda
	Slide Number 3
	Overview�Basics
	Overview�Why Git?
	Overview�Working with GitHub
	Version control with Git�Foundations
	Version control with Git�Understanding the Flow
	Version control with Git�Understanding the Flow
	Version control with Git�Understanding the Flow
	Version control with Git�Understanding the Flow
	Version control with Git�Understanding the Flow
	Version control with Git�Understanding the Flow
	GitHub Desktop�Getting GitHub ready
	GitHub Desktop�Installation
	GitHub Desktop�Use Cases
	GitHub Desktop�1. Starting a new repository for collaboration�
	GitHub Desktop�2. Contributing to your existing repository
	GitHub Desktop�2. Contributing to your existing repository
	GitHub Desktop�Summary
	GitHub Project Management�Overview
	GitHub Project Management�Overview
	GitHub Project Management�Demo
	Git and GitHub�Useful Resources
	Slide Number 25
	Overview�Packages and environments
	Overview�Why we need environment/package management?
	Overview�What is Conda?
	Background�Integrated development environments (IDEs)
	Background�Integrated development environments (IDEs)
	Installing Conda�
	Working in Conda�Basics
	Working in Conda�Managing Conda
	Working in Conda�Managing environments
	Working in Conda�Switching environments
	Working in Conda�Managing packages [1/2]
	Working in Conda�Managing packages [2/2]
	Working in Conda�Typical Conda workflow with Jupyter
	Working in Conda�Typical Conda workflow with Jupyter
	Working in Conda�Summary�
	Working on APA Projects�Tip #1: Possible project organization
	Working on APA Projects�Tip #2: LEQR Servers
	Slide Number 43
	Thank you for your attention!��Stefan Lessmann��Chair of Information Systems�School of Business and Economics�Humboldt-University of Berlin, Germany��Tel.	+49.30.2093.99540 �Fax.	+49.30.2093.99541��stefan.lessmann@hu-berlin.de�http://bit.ly/hu-wi��www.hu-berlin.de
	Slide Number 45
	Appendix�Outline
	Git and GitHub�Terminology
	Git and GitHub�Terminology
	Git and GitHub�Terminology
	Git and GitHub�Terminology
	Git and GitHub�Terminology
	GitHub via Web browser �1. Starting a new repository and publishing it to GitHub
	GitHub via Web browser�2. Contributing to your existing repository on GitHub
	GitHub via Web browser�3. Contributing to someone’s GitHub repository (i.e. BADS)
	GitHub via Web browser�4. Syncing the forked GitHub repository (i.e. BADS)
	GitHub via Terminal�Getting Git ready
	GitHub via Terminal�Getting Git ready
	GitHub via Terminal�1. Starting a new repository and publishing it to GitHub
	GitHub via Terminal�1. Starting a new repository and publishing it to GitHub
	GitHub via Terminal�1. Starting a new repository and publishing it to GitHub
	GitHub via Terminal�2. Contributing to your existing repository on GitHub
	GitHub via Terminal�2. Contributing to your existing repository on GitHub
	GitHub via Terminal�2. Contributing to your existing repository on GitHub
	GitHub via Terminal�3. Contributing to someone’s GitHub repository (i.e. BADS)
	GitHub via Terminal�3. Contributing to someone’s GitHub repository (i.e. BADS)
	GitHub via Terminal�4. Syncing the forked GitHub repository (i.e. BADS)
	GitHub via Terminal�4. Syncing the forked GitHub repository (i.e. BADS)

