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Acceptance Loop in Credit Scoring

• scoring model filters incoming loan applications 
- ML model observes features of incoming applicants

- predicts whether an applicant will repay the loan


• training a model requires data with known outcomes  
- repayment outcome is only observed for accepted applicants 
- application labels are missing not completely at random


• acceptance loop creates sampling bias 
- adverse impact of bias depends on the missingness type

41. Problem Illustration
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Sampling Bias Illustration [1/3]

51. Problem Illustration25.08.2021
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Synthetic data: 
• sampling GOOD and BAD risks from multivariate Gaussian mixtures

• simulating real-world acceptance loop: 

- iteratively generating batches of new applications 
- using a scoring model to accept and reject new applications

- updating the model after learning the labels of accepts


• evaluating performance on a holdout sample from population
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Sampling Bias Illustration [2/3]

61. Problem Illustration25.08.2021
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Sampling Bias Illustration [3/3]
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1. Problem Illustration

AUC = area under the ROC curve; higher is better
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Background on Reject Inference [1/2]  .

слайд 1/182.1. Reject Inference 9

Reject inference mitigates sampling bias by using data on rejects 
• label rejects using one of the RI techniques

• train a scoring model on the augmented data

• examples: hard cutoff augmentation, parceling, Heckman model
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Background on Reject Inference [2/2]  .
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Hard cutoff augmentation (HCA): 
• train a scoring model over accepts 
• predict P(BAD) for rejects using this model

• assign labels based on a certain threshold

Parceling: 
• split rejects into groups based on the model score

• assign labels within groups proportionally to the expected BAD rate

• BAD rate for rejects is usually assumed to be higher than for accepts

Reject inference mitigates sampling bias by using data on rejects 
• label rejects using one of the RI techniques

• train a scoring model on the augmented data

• examples: hard cutoff augmentation, parceling, Heckman model
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Offline vs Online Reject Inference [1/2]  …
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• traditional reject inference methods are offline 
- sampling bias is mitigated by working with past rejects


• offline reject inference has limitations 
- actual labels of the rejects are never observed 

- rejects become less relevant with dataset shift (e.g., business cycle)

- regulation may prohibit using data on rejected customers


• we propose «online» reject inference with active learning (AL) 
- working with applications about to be rejected by a scorecard

- issuing a loan to selected rejects to learn the actual labels


• «online» reject inference stands on the cost-benefit trade-off 
- cost from issuing loans to risky customers

- gain from obtaining a more representative training data
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What is Active Learning? [1/4]

слайд 1/182.2. Active Learning25.08.2021 13

ML framework in which a learning algorithm interactively queries to label 
currently unlabeled data points 
• consider classification task with labeled and unlabeled data

• active learning identifies “most interesting” unlabeled data points


- which observations would improve classifier performance if they had labels? 

- can be measured as uncertainty, correlation, expected error decrease, etc.


• identified data points are labeled (oracle expert)

• the classifier is trained on augmented data

N Kozodoi, S Lessmann
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What is Active Learning? [2/4]
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ML framework in which a learning algorithm interactively queries to label 
currently unlabeled data points 
• consider a classification task with labeled and unlabeled data

• active learning identifies “most interesting” unlabeled data points


- which observations would improve classifier performance if they had labels? 

- can be measured as uncertainty, correlation, expected error decrease, etc.


• identified data points are labeled (oracle expert)

• the classifier is trained on augmented data
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What is Active Learning? [3/4]
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ML framework in which a learning algorithm interactively queries to label 
currently unlabeled data points 
• consider a classification task with labeled and unlabeled data

• AL identifies “most interesting” unlabeled data points


- which observations would improve classifier performance if they had labels? 

- can be measured as uncertainty, correlation, expected error decrease, etc.


• identified data points are labeled (oracle expert)

• the classifier is trained on augmented data
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What is Active Learning? [4/4]
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ML framework in which a learning algorithm interactively queries to label 
currently unlabeled data points 
• consider a classification task with labeled and unlabeled data

• AL identifies “most interesting” unlabeled data points


- which observations would improve classifier performance if they had labels? 

- can be measured as uncertainty, correlation, expected error decrease, etc.


• identified data points are labeled by oracle

• the classifier is trained on augmented data
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Acceptance Loop with AL
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• scoring model filters incoming loan applications 
- ML model observes features of incoming applicants

- predicts whether an applicant will repay the loan


• active learning selects additional cases rejected by a scorecard 
- AL model observes features of rejects and scorecard predictions

- predicts whether an applicant will be «useful»
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REJECTS

GOOD

AL
Model
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Selected AL Techniques
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Uncertainty sampling: 
• selects observations that the ML model is least confident about 
• e.g., cases with predicted P(BAD) close to 0.5

Query-by-committee (QBC): 
• trains a set (committee) of ML models (e.g., on different training folds) 
• selects observations where the committee disagrees the most 
• e.g., cases with the highest Kullback-Leibler divergence over predictions

Optimized probabilistic active learning (OPAL): 
• measures «spatial usefulness» of an unlabeled observation

• selects observations that maximize the expected reduction in 

(asymmetric) misclassification cost

• e.g., cases from high-density areas with potentially higher error costs

25.08.2021 2.2. Active Learning N Kozodoi, S Lessmann
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1. Sampling Bias Problem 
- Problem setup & illustration

- Impact on scoring models


2. Correcting Sampling Bias 
- Traditional «offline» reject inference

- Active learning for «online» reject inference


3. Empirical Results 
- Experimental setup

- Preliminary results
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Data Summary
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Data set Observations Features BAD rate

 LendingClub 100,000 17 8 %

 Synthetic Data 50,000 19 40 %

Real data: 
• consumer credit scoring data provided by LendingClub

• repayment behavior of actual rejects is not available

• treating most risky accepts as «rejects»

Synthetic data: 
• full control over the data generation process

• repayment behavior of both accepts and rejects is available
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Experimental Setup
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Acceptance loop: 
• draw / generate a batch of new applications 
• accept a subset of loan applications


- select 20% low-risk cases with ML model 
- select 10% «useful» cases with AL model 

• augment training data with labeled accepts

• retrain the scoring model on new data

• evaluate performance on a holdout sample

repeat for 200 iterations

25.08.2021

Performance evaluation: 
• two cost / benefit components compared to base model: 

- model performance: improved accuracy of the retrained ML model

- data augmentation: accepting extra applicants with the AL model

N Kozodoi, S Lessmann
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Results: LendingClub [1/3]  
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Results: LendingClub [2/3]  
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Results: LendingClub [3/3]  
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Results: Model Performance [1/2]
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Method AUC 
gain

BS 
gain

ABR 
gain

Random .069 .101 .057

US

QBC

OPAL

Oracle .098 .107 .405

Method AUC 
gain

BS 
gain

ABR 
gain

Random .025 .009 .897

US

QBC

OPAL

Oracle .037 .013 1.380

LendingClub 
Dataset

Synthetic 
Dataset

• average gains per iteration in area under the learning curve relative to base model

• positive numbers indicate improvement over the base model 

• bold numbers in green indicate the best method per metric

25.08.2021

AUC = area under the ROC curve; BS = Brier score; ABR = BAD rate then accepting top-20% applicants
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Results: Model Performance [2/2]
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Method AUC 
gain

BS 
gain

ABR 
gain

Random .069 .101 .057

US .061 .103 .245

QBC .082 .097 .264

OPAL .058 .094 .172

Oracle .098 .107 .405

Method AUC 
gain

BS 
gain

ABR 
gain

Random .025 .009 .897

US .026 .009 .798

QBC .027 .008 .830

OPAL .025 .008 .857

Oracle .037 .013 1.380

LendingClub 
Dataset

Synthetic 
Dataset

• average gains per iteration in area under the learning curve relative to base model

• positive numbers indicate improvement over the base model

• bold numbers in green indicate the best method per metric

25.08.2021

AUC = area under the ROC curve; BS = Brier score; ABR = BAD rate then accepting top-20% applicants
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Results: Overall Profit [1/2]
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Method Data
profit

Model
 profit

Total 
profit

Random

US

QBC

OPAL

Oracle 1.271 .002 1.272

Method Data
profit

Model
 profit

Total 
profit

Random

US

QBC

OPAL

Oracle -1.068 .005 -1.062

LendingClub 
Dataset

Synthetic 
Dataset

25.08.2021

• data profit    = profit from assigning loans to applicants selected with AL

• model profit = profit from model improvement after data augmentation

• values represent average profit per EUR issued 

N Kozodoi, S Lessmann



слайд 1/18Nikita Kozodoi08.07.2021

Results: Overall Profit [2/2]
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Method Data
profit

Model
 profit

Total 
profit

Random .124 .000 .125

US .132 .001 .133

QBC .154 .001 .155

OPAL .095 .000 .096

Oracle 1.271 .002 1.272

Method Data
profit

Model
 profit

Total 
profit

Random -.098 .002 -.095

US -.115 .003 -.112

QBC -.040 .003 -.036

OPAL -.167 .003 -.163

Oracle -1.068 .005 -1.062

LendingClub 
Dataset

Synthetic 
Dataset

25.08.2021

• data profit    = profit from assigning loans to applicants selected with AL

• model profit = profit from model improvement after data augmentation

• values represent average profit per EUR issued 
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Summary 
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• AL improves performance and profitability of credit scorecards 
- positive gains in different performance metrics

- query-by-committee demonstrates most potential


• trade-off between labeling cost and model improvement 
- labeling cost can outweigh the model improvement  
- percentage of labeled cases is an important meta-parameter

- when to stop labeling?


• further experiments needed to clarify the potential of AL 
- strong impact of the data characteristics on costs & benefits

- in which environments AL is useful?
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