

Presentation Outline

1. Sampling Bias in Credit Scoring

- Problem setup & illustration
- Impact on scoring models

2. Correcting Sampling Bias

- Offline reject inference
- Active learning for online reject inference

3. Empirical Results

- Experimental setup
- Preliminary results

Presentation Outline

1. Sampling Bias in Credit Scoring

- Problem setup & illustration
- Impact on scoring models

2. Correcting Sampling Bias

- Offline reject inference
- Active learning for online reject inference

3. Empirical Results

- Experimental setup
- Preliminary results

Acceptance Loop in Credit Scoring

- scoring model filters incoming loan applications
 - ML model observes features of incoming applicants
 - predicts whether an applicant will repay the loan
- training a model requires data with known outcomes
 - repayment outcome is only observed for accepted applicants
 - application labels are missing not completely at random
- acceptance loop creates sampling bias
 - adverse impact of bias depends on the missingness type

Sampling Bias Illustration [1/3]

Synthetic data:

- sampling GOOD and BAD risks from multivariate Gaussian mixtures
- simulating real-world acceptance loop:
 - iteratively generating **batches** of new applications
 - using a scoring model to accept and reject new applications
 - updating the model after learning the labels of accepts
- evaluating performance on a holdout sample from population

Sampling Bias Illustration [2/3]

Sampling Bias Illustration [3/3]

AUC = area under the ROC curve; higher is better

Presentation Outline

1. Sampling Bias in Credit Scoring

- Problem setup & illustration
- Impact on scoring models

2. Correcting Sampling Bias

- Offline reject inference
- Active learning for online reject inference

3. Empirical Results

- Experimental setup
- Preliminary results

Background on Reject Inference [1/2]

Reject inference mitigates sampling bias by using data on rejects

- label rejects using one of the RI techniques
- train a scoring model on the augmented data
- examples: hard cutoff augmentation, parceling, Heckman model

Background on Reject Inference [2/2]

Reject inference mitigates sampling bias by using data on rejects

- label rejects using one of the RI techniques
- train a scoring model on the augmented data
- examples: hard cutoff augmentation, parceling, Heckman model

Hard cutoff augmentation (HCA):

- train a scoring model over accepts
- predict **P(BAD)** for **rejects** using this model
- assign labels based on a certain threshold

Parceling:

- split rejects into groups based on the model score
- assign labels within groups proportionally to the expected **BAD** rate
- **BAD** rate for rejects is usually assumed to be higher than for accepts

Offline vs Online Reject Inference [1/2]

- traditional reject inference methods are <u>offline</u>
 - sampling bias is mitigated by working with past rejects
- <u>offline</u> reject inference has limitations
 - actual labels of the rejects are never observed
 - rejects become less relevant with dataset shift (e.g., business cycle)
 - regulation may prohibit using data on rejected customers

Offline vs Online Reject Inference [2/2]

- traditional reject inference methods are <u>offline</u>
 - sampling bias is mitigated by working with past rejects
- <u>offline</u> reject inference has limitations
 - actual labels of the **rejects** are never observed
 - rejects become less relevant with dataset shift (e.g., business cycle)
 - regulation may prohibit using data on rejected customers
- we propose <u>online</u> reject inference with active learning (AL)
 - working with applications about to be rejected by a scorecard
 - issuing a loan to selected rejects to learn the actual labels
- online reject inference stands on the cost-benefit trade-off
 - cost from issuing loans to risky customers
 - gain from obtaining a more representative training data

What is Active Learning? [1/4]

ML framework in which a learning algorithm interactively queries to label currently unlabeled data points

What is Active Learning? [2/4]

ML framework in which a learning algorithm interactively queries to label currently unlabeled data points

consider a classification task with labeled and unlabeled data

LABELED DATA UNLABELED DATA

What is Active Learning? [3/4]

ML framework in which a learning algorithm interactively queries to label currently unlabeled data points

- consider a classification task with labeled and unlabeled data
- AL identifies "most interesting" unlabeled data points
 - which observations would improve classifier performance if they had labels?
 - can be measured as uncertainty, correlation, expected error decrease, etc.

What is Active Learning? [4/4]

ML framework in which a learning algorithm interactively queries to label currently unlabeled data points

- consider a classification task with labeled and unlabeled data
- AL identifies "most interesting" unlabeled data points
 - which observations would improve classifier performance if they had labels?
 - can be measured as uncertainty, correlation, expected error decrease, etc.
- identified data points are labeled by oracle
- the classifier is trained on augmented data

Acceptance Loop with AL

- scoring model filters incoming loan applications
 - ML model observes features of incoming applicants
 - predicts whether an applicant will repay the loan
- active learning selects additional cases rejected by a scorecard
 - AL model observes features of rejects and scorecard predictions
 - predicts whether an applicant will be «useful»

Selected AL Techniques

Uncertainty sampling:

- selects observations that the ML model is least confident about
- e.g., cases with predicted **P(BAD)** close to 0.5

Query-by-committee (QBC):

- trains a set (committee) of ML models (e.g., on different training folds)
- selects observations where the committee disagrees the most
- e.g., cases with the highest Kullback-Leibler divergence over predictions

Optimized probabilistic active learning (OPAL):

- measures «spatial usefulness» of an unlabeled observation
- selects observations that maximize the expected reduction in (asymmetric) misclassification cost
- e.g., cases from high-density areas with potentially higher error costs

Presentation Outline

1. Sampling Bias Problem

- Problem setup & illustration
- Impact on scoring models

2. Correcting Sampling Bias

- Traditional «offline» reject inference
- Active learning for «online» reject inference

3. Empirical Results

- Experimental setup
- Preliminary results

Data Summary

Real data:

- consumer credit scoring data provided by LendingClub
- repayment behavior of actual rejects is not available
- treating most risky accepts as «rejects»

Synthetic data:

- full control over the data generation process
- repayment behavior of both accepts and rejects is available

Data set	Observations	Features	BAD rate
LendingClub	100,000	17	8 %
Synthetic Data	50,000	19	40 %

Experimental Setup

Acceptance loop:

- draw / generate a batch of new applications
- accept a subset of loan applications
 - select 20% low-risk cases with ML model
 - select 10% «useful» cases with AL model
- augment training data with labeled accepts
- retrain the scoring model on new data
- evaluate performance on a holdout sample

repeat for 200 iterations

Performance evaluation:

- two cost / benefit components compared to base model:
 - model performance: improved accuracy of the retrained ML model
 - data augmentation: accepting extra applicants with the AL model

Results: LendingClub [1/3]

Results: LendingClub [2/3]

Results: LendingClub [3/3]

Results: Model Performance [1/2]

LendingClub Dataset

Synthetic Dataset

Method	AUC gain	BS gain	ABR gain
Random	.069	.101	.057
US			
QBC			
OPAL			
Oracle	.098	.107	.405

Method	AUC gain	BS gain	ABR gain
Random	.025	.009	.897
US			
QBC			
OPAL			
Oracle	.037	.013	1.380

- average gains per iteration in area under the learning curve relative to base model
- positive numbers indicate improvement over the base model

AUC = area under the ROC curve; **BS** = Brier score; **ABR** = BAD rate then accepting top-20% applicants

Results: Model Performance [2/2]

LendingClub Dataset

Synthetic Dataset

Method	AUC gain	BS gain	ABR gain
Random	.069	.101	.057
US	.061	.103	.245
QBC	.082	.097	.264
OPAL	.058	.094	.172
Oracle	.098	.107	.405

Method	AUC gain	BS gain	ABR gain
Random	.025	.009	.897
US	.026	.009	.798
QBC	.027	.008	.830
OPAL	.025	.008	.857
Oracle	.037	.013	1.380

- average gains per iteration in area under the learning curve relative to base model
- positive numbers indicate improvement over the base model

AUC = area under the ROC curve; **BS** = Brier score; **ABR** = BAD rate then accepting top-20% applicants

Results: Overall Profit [1/2]

LendingClub Dataset

Synthetic Dataset

Method	Data profit	Model profit	Total profit
Random			
US			
QBC			
OPAL			
Oracle	1.271	.002	1.272

Method	Data profit	Model profit	Total profit
Random			
US			
QBC			
OPAL			
Oracle	-1.068	.005	-1.062

- data profit = profit from assigning loans to applicants selected with AL
- model profit = profit from model improvement after data augmentation
- values represent average profit per EUR issued

25.08.2021

Results: Overall Profit [2/2]

LendingClub Dataset

Synthetic Dataset

Method	Data profit	Model profit	Total profit
Random	.124	.000	.125
US	.132	.001	.133
QBC	.154	.001	.155
OPAL	.095	.000	.096
Oracle	1.271	.002	1.272

Method	Data profit	Model profit	Total profit
Random	098	.002	095
US	115	.003	112
QBC	040	.003	036
OPAL	167	.003	163
Oracle	-1.068	.005	-1.062

- data profit = profit from assigning loans to applicants selected with AL
- model profit = profit from model improvement after data augmentation
- values represent average profit per EUR issued

Summary

AL improves performance and profitability of credit scorecards

- positive gains in different performance metrics
- query-by-committee demonstrates most potential

trade-off between labeling cost and model improvement

- labeling cost can outweigh the model improvement
- percentage of labeled cases is an important meta-parameter
- when to stop labeling?

further experiments needed to clarify the potential of AL

- strong impact of the data characteristics on costs & benefits
- in which environments AL is useful?

References

Banasik, J., Crook, J., & Thomas, L. (2003). **Sample selection bias in credit scoring models.** Journal of the Operational Research Society, 54(8), 822-832.

Culver, M., Kun, D., & Scott, S. (2006). **Active learning to maximize area under the ROC curve.** In Sixth International Conference on Data Mining (ICDM'06) (pp. 149-158). IEEE.

Krempl, G., Kottke, D. (2017). **On Optimising Sample Selection in Credit Scoring with Active Learning.** In Credit Scoring and Credit Control XV. (pp. 2). Credit Research Centre.

Krempl, G., Kottke, D., & Lemaire, V. (2015). **Optimised probabilistic active learning (OPAL): For fast, non-myopic, cost-sensitive active classification**, Machine Learning, 100(2–3), 449–476.

Settles, B. (2012). **Active Learning.** Synthesis Lectures on Artificial Intelligence and Machine Learning #18. Morgan & Claypool Publishers.

Seung, H.S., Opper, M., & Sompolinsky, H. (1992). **Query by committee.** In Proceedings of the ACM Workshop on Computational Learning Theory, 287-294.

