# Shallow Self-Learning for Reject Inference in Credit Scoring

Nikita Kozodoi<sup>1,2</sup>, Panagiotis Katsas<sup>2</sup>,

Stefan Lessmann<sup>1</sup>, Luis Moreira-Matias<sup>2</sup> and Konstantinos Papakonstantinou<sup>2</sup>

nikita.kozodoi@hu-berlin.de







17.09.2019 Würzburg Nikita Kozodoi

#### **Presentation Outline**

- 1. Sample Bias Problem
- 2. Shallow Self-Learning for Reject Inference
- 3. Evaluation Problem
- 4. Kickout Metric for Model Selection
- 5. Performance Evaluation

## Motivation: Acceptance Cycle



#### Motivation: Acceptance Cycle



- acceptance cycle creates sample bias
- labels are not missing at random

## Sample Bias: Impact on Performance



Data: multivariate Gaussians with class-specific means and covariance

3

## Sample Bias: Gain from Reject Inference



Data: multivariate Gaussians with class-specific means and covariance

## Background on Reject Inference

#### Reject Inference Methods

# Credit Scoring Literature

- label all as BAD
- hard cutoff augmentation
- parcelling

# Semi-Supervised Learning

- self-learning
- semi-supervised SVMs
- graph-based methods

# **Label Noise Correction**

- CV-based voting
- neighbor-based labeling
- evolutionary algorithms

#### **Empirical results:**

- studies provide little evidence of gains from reject inference (Banasik et al 2005, Chen et al 2001, Cook et al 2004, Verstraeten et al 2005)
- data is often incomplete, low-dimensional or synthetic (e.g., Bücker et al 2013, Maldonado et al 2010)

17.09.2019 1. Sample Bias Nikita Kozodoi

#### Reject Inference with Shallow SL



- removing rejects whose distribution is most different from the accepts
- reduces the risk of error propagation due to noise in predictions

## Reject Inference with Shallow SL



- only label rejects if the model's confidence is high
- using weak learner (L1) to get well-calibrated probabilities
- imbalance parameter heta to account for higher BAD rate among rejects
- stopping criteria: confidence threshold & scoring model performance

#### Reject Inference with Shallow SL



## Illustrative Example on Synthetic Data



## Illustrative Example on Synthetic Data



## **Evaluation Problem: Correlation Analysis**

|                   | AUC<br>(accepts) | AUC<br>(unbiased) |
|-------------------|------------------|-------------------|
| AUC<br>(accepts)  | 1                |                   |
| AUC<br>(unbiased) | 0.12             | 1                 |

- AUC (accepts) = experimental AUC on a biased holdout sample of accepts
- AUC (unbiased) = production AUC on a representative holdout sample of clients

Data: real-world credit scoring data with synthetic labels (bureau scores)

## **Evaluation Problem: Correlation Analysis**

|                   | AUC<br>(accepts) | AUC<br>(unbiased) | Kickout |
|-------------------|------------------|-------------------|---------|
| AUC<br>(accepts)  | 1                |                   |         |
| AUC<br>(unbiased) | 0.12             | 1                 |         |
| Kickout           | 0.01             | 0.30              | 1       |

Kickout metric better correlates with performance on unbiased sample

Data: real-world credit scoring data with synthetic labels (bureau scores)

## Introducing the Kickout Metric

#### **Intuition:**

- compare two scoring models: before and after reject inference [RI]
- count GOOD and BAD cases that are "kicked out" rejected after RI
- updated model should kick out more BAD and less GOOD cases
  - kicked out cases are replaced by rejects with unknown labels
  - kicking out a BAD case has a positive expected value
  - kicking out a GOOD case has a negative expected value

$$kickout = \frac{\frac{K_B}{p(B)} - \frac{K_G}{1-p(B)}}{\frac{S_B}{p(B)}}$$

- K<sub>B</sub>, K<sub>G</sub> kicked-out BADs and GOODs
- **p(B)** probability of selecting **BAD** example
- S<sub>B</sub> number of selected BAD examples

## **Experiment on Real-World Data**

#### **Data description:**



- contains data on accepted and rejected applicants
- also contains unbiased sample: loans that were randomly accepted

| Characteristic     | Accepts | Rejects | Unbiased |
|--------------------|---------|---------|----------|
| Number of cases    | 39,579  | 18,047  | 1,967    |
| Number of features | 2,410   | 2,410   | 2,410    |
| BAD rate           | 39 %    | -       | 66 %     |

## **Experimental Results: Performance**

| Method                          | Mean AUC*<br>(unbiased) |  |
|---------------------------------|-------------------------|--|
| Ignore rejects                  | 0.8007                  |  |
| Label all rejects as BAD        | 0.6797                  |  |
| Bureau score based inference    | 0.7911                  |  |
| Hard cutoff augmentation        | 0.7994                  |  |
| Parceling                       | 0.8041                  |  |
| Shallow Self-Learning + Kickout | 0.8072                  |  |

\*average across **50 bootstrap samples** 

#### Experimental Results: Business Value

#### **Assumptions:**

- acceptance rate = 30% (applicants with the lowest predicted score)
- average loan amount = \$17,100<sup>1</sup>
- average interest rate = 10.36%<sup>1</sup>
- average loss given default = 25%<sup>2</sup>

#### **Business value:**

- difference between ignoring rejects and proposed method translates to 60 less defaulted loans for every 10,000 accepted clients
- potential gains = \$1.13 million \* 0.25 = \$283,073

<sup>&</sup>lt;sup>1</sup> Source: https://www.supermoney.com/studies/personal-loans-industry-study/

<sup>&</sup>lt;sup>2</sup> Source: https://www.globalcreditdata.org/system/files/documents/gcd\_lgd\_report\_large\_corporates\_2018.pdf

## **Summary & Questions**

#### 1. Demonstrated the sample bias problem

#### 2. Introduced a new reject inference method

labeling rejects with shallow self-learning to mitigate bias

#### 3. Introduced a new evaluation metric

- performance on accepts poorly correlates with performance on the unbiased sample
- kickout metric is a more suitable measure for model selection

#### 4. Evaluated performance gains

- proposed method increases AUC compared to benchmarks
- potential monetary gains are ~ \$300k per 10,000 loans