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Common data sources: 
• application data

• credit bureau data

• transaction history

• geographical data

• social media

• …

High dimensionality emphasizes 
importance of feature selection
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Feature Selection in Credit Scoring: Objectives

1. Problem Setting

It is important to account for three distinct objectives

Acquisition costsPerformance Comprehensibility

Feature selection goals

• scorecard accuracy 
affects profit


• usually measured in AUC 
(ranking loan applicants) 

• features are usually 
purchased in groups 

• providers have different 
payment options  
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• regulations enforce 
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Search algorithms: 
• Genetic algorithms (GA)


- NSGA-II — well-known optimization algorithm (Hambdani et al. 2007)

- NSGA-III — handles issues with many objectives (Bidgoli et al. 2019)


• Particle swarm optimization (PSO)

- outperforms GAs in optimization tasks (Zhu et al. 2017)

Credit scoring applications: 
• SVM-based feature selection (Maldonado et al. 2015; 2017)


- optimizes performance and feature costs

- can only be used with SVMs


• NSGA-II (Kozodoi et al. 2019)

- two objectives: number of features and model performance
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Proposed Feature Selection Framework

18.09.2020

Objectives: 
• AUC of the scorecard

• number of selected features 
• data acquisitions costs

Feature search: 
• adapting a PSO-based algorithm to improve feature search

2. AgMOPSO Framework
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Feature Selection with AgMOPSO

2. AgMOPSO Framework18.09.2020

Training a scorecard

0 0 0 01 1 M f
Features FitnessModel

Swarm of particles
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Max. number of generations

Pareto frontier
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Credit Scoring Data Sets

Data Label Sample Size No. Features Default Rate

 australian 690 42 .44

 german 1,000 61 .30

 thomas 1,125 28 .26

 hmeq 5,960 20 .20

 cashbus 15,000 1.308 .10

 lending club 43,344 206 .07

 packdd 50,000 373 .26

 paipaidai 60,000 1.934 .07

 gmsc 150,000 68 .07

3. Experimental Design18.09.2020
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Experimental Setup

1. Simulate data acquisition costs 
• continuous features: draw from Uniform distribution

• categorical features: group-based cost for dummies


2. Data partitioning 
• training (70%):  feature selection within 4-fold CV 
• holdout (30%):  performance evaluation


3. Benchmarks 
• AgMOPSO

• NSGA-II

• NSGA-III

• Full model with all features

18.09.2020

multi-objective methods

3. Experimental Design



слайд 1/18Nikita Kozodoi 10

Results: Performance

Algorithm ONVG TSC SPC SPR HV AUC NF DAC

 NSGA-II 1.86 1.97 2.37 1.49 1.98

 NSGA-III 2.31 1.99 1.45 2.48 2.23

 AgMOPSO 1.61 1.79 2.13 1.78 1.74

 Full Model — 

18.09.2020

Cardinality

Convergence
Diversity

Overall performance

4. Results
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Results: Performance

Algorithm ONVG TSC SPC SPR HV AUC NF DAC

 NSGA-II 1.86 1.97 2.37 1.49 1.98 2.33 2.33 2.44

 NSGA-III 2.31 1.99 1.45 2.48 2.23 2.33 1.22 1.11

 AgMOPSO 1.61 1.79 2.13 1.78 1.74 1.67 2.44 2.44

 Full Model — 3.67 4.00 4.00

18.09.2020

AgMOPSO evolves solutions in the region 
with high AUC better than competitors

4. Results
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Results: Pareto Frontiers

4. Results18.09.2020

Example Pareto frontier on gsmc

AUC

Cost

AUC

Cost

Features
Features
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Summary & Questions

1. Problem setting 
• conflicting goals of feature selection in credit scoring 
• purchasing data decorrelates number and cost of features 

2. New feature selection framework 
• optimizes three objectives: AUC, number of features, feature costs

• uses PSO algorithm for feature search


3. Experiments on real-world data sets 
• competitive performance compared to other multi-objective methods

• efficiently explores search space with high AUC 

18.09.2020 ECML MIDAS 2020


