Multi-Objective Particle Swarm Optimization for Feature Selection in Credit Scoring

Nikita Kozodoi^{1,2} Stefan Lessmann¹

nikita.kozodoi@hu-berlin.de

Humboldt University of Berlin

18.09.2020 ECML MIDAS 2020 Nikita Kozodoi

Presentation Outline

- 1. Problem Setting
- 2. Proposed Feature Selection Framework
- 3. Experimental Design
- 4. Empirical Results
- 5. Conclusions

Background

Credit scoring:

- the use of statistical models to support decision-making in the retail credit sector (Crook et al. 2007)
- classification task of distinguishing BAD and GOOD loans
- scorecard model that estimates probability of default

Background

Credit scoring:

- the use of statistical models to support decision-making in the retail credit sector (Crook et al. 2007)
- classification task of distinguishing BAD and GOOD loans
- scorecard model that estimates probability of default

Common data sources:

- application data
- credit bureau data
- transaction history
- geographical data
- social media

• . . .

Background

Credit scoring:

- the use of statistical models to support decision-making in the retail credit sector (Crook et al. 2007)
- classification task of distinguishing BAD and GOOD loans
- scorecard model that estimates probability of default

Common data sources:

- application data
- credit bureau data
- transaction history
- geographical data
- social media

• . . .

High dimensionality emphasizes importance of feature selection

3

- scorecard accuracy affects profit
- usually measured in AUC (ranking loan applicants)

- scorecard accuracy affects profit
- usually measured in AUC (ranking loan applicants)
- regulations enforce
 comprehensible models
- data storage costs

Feature selection goals

Performance

- scorecard accuracy affects profit
- usually measured in AUC (ranking loan applicants)

Comprehensibility

- regulations enforce
 comprehensible models
- data storage costs

Acquisition costs

- features are usually purchased in groups
- providers have different payment options
- this decorrelates feature number and their cost

Feature selection goals

Performance

- scorecard accuracy affects profit
- usually measured in AUC (ranking loan applicants)

Comprehensibility

- regulations enforce
 comprehensible models
- data storage costs

Acquisition costs

- features are usually purchased in groups
- providers have different payment options
- this decorrelates feature number and their cost

It is important to account for three distinct objectives

17.09.2019 1. Problem Setting Nikita Kozodoi

Multi-objective methods:

- Weighting multiple objective into one
- Introducing a budget constraint
- Optimizing multiple distinct objectives

5

Multi-objective methods:

- Weighting multiple objective into one
- Introducing a budget constraint
- Optimizing multiple distinct objectives

Search algorithms:

- Genetic algorithms (GA)
 - **NSGA-II** well-known optimization algorithm (Hambdani et al. 2007)
 - NSGA-III handles issues with many objectives (Bidgoli et al. 2019)
- Particle swarm optimization (PSO)
 - outperforms GAs in optimization tasks (Zhu et al. 2017)

Search algorithms:

- Genetic algorithms (GA)
 - **NSGA-II** well-known optimization algorithm (Hambdani et al. 2007)
 - **NSGA-III** handles issues with many objectives (Bidgoli et al. 2019)
- Particle swarm optimization (PSO)
 - outperforms GAs in optimization tasks (Zhu et al. 2017)

Credit scoring applications:

- SVM-based feature selection (Maldonado et al. 2015; 2017)
 - optimizes performance and feature costs
 - can only be used with SVMs
- NSGA-II (Kozodoi et al. 2019)
 - two objectives: number of features and model performance

Proposed Feature Selection Framework

Objectives:

- AUC of the scorecard
- number of selected features
- data acquisitions costs

Feature search:

18.09.2020

adapting a PSO-based algorithm to improve feature search

Nikita Kozodoi

18.09.2020

Credit Scoring Data Sets

Data Label	Sample Size	No. Features	Default Rate	
australian	690	42	.44	
german	1,000	61	.30	
thomas	1,125	28	.26	
hmeq	5,960	20	.20	
cashbus	15,000	1.308	.10	
lending club	43,344	206	.07	
packdd	50,000	373	.26	
paipaidai	60,000	1.934	.07	
gmsc	150,000	68	.07	

Experimental Setup

1. Simulate data acquisition costs

- · continuous features: draw from Uniform distribution
- · categorical features: group-based cost for dummies

2. Data partitioning

- training (70%): feature selection within 4-fold CV
- · holdout (30%): performance evaluation

3. Benchmarks

- AgMOPSO
 NSGA-III
 NSGA-III
- Full model with all features

Results: Performance

Convergence				[Diversity	
a	rdinality					
	AgMOPSO	1.61	1.79	2.13	1.78	1.74
	NSGA-III	2.31	1.99	1.45	2.48	2.23
	NSGA-II	1.86	1.97	2.37	1.49	1.98
	Algorithm	ONVG	TSC	SPC	SPR	HV

Results: Performance

Algorithm	ONVG	TSC	SPC	SPR	HV	AUC	NF	DAC
NSGA-II	1.86	1.97	2.37	1.49	1.98	2.33	2.33	2.44
NSGA-III	2.31	1.99	1.45	2.48	2.23	2.33	1.22	1.11
AgMOPSO	1.61	1.79	2.13	1.78	1.74	1.67	2.44	2.44
Full Model	<u>—</u>					3.67	4.00	4.00

AgMOPSO evolves solutions in the region with high AUC better than competitors

Results: Pareto Frontiers

Summary & Questions

1. Problem setting

- conflicting goals of feature selection in credit scoring
- purchasing data decorrelates number and cost of features

2. New feature selection framework

- · optimizes three objectives: AUC, number of features, feature costs
- uses PSO algorithm for feature search

3. Experiments on real-world data sets

- competitive performance compared to other multi-objective methods
- efficiently explores search space with high AUC