

ECML-PKDD23' ML4ITS WORKSHOP - SEPTEMBER 22, 2023

Probabilistic Demand Forecasting with Graph Neural Networks

Nikita Kozodoi¹ Elizaveta Zinovyeva¹ Simon Valentin² João Pereira³ Rodrigo Agundez³

¹Amazon Web Services ²University of Edinburgh ³adidas AG

Project Team

1. Motivation & Related Work

Demand Forecasting in e-Commerce

Enables optimizing stock planning, logistics, and supply chain operations.

- Ensure product availability online Under-prediction
- Minimize waste Over-prediction

Demand Forecasting: Related Work

TRADITIONAL TIME SERIES MODELS

ARIMA, moving average, univariate time series models (e.g., [3]).

LIMITATIONS

Cold starts

Scalability

Demand Forecasting: Related Work

TRADITIONAL TIME SERIES MODELS

ARIMA, moving average, univariate time series models (e.g., [3]).

NEURAL SEQUENCE MODELS

RNNs, DeepAR [4], Seq2Seq, Transformer models.

LIMITATIONS

Cold starts

Scalability

Independent demand predictions

Articles are not "aware" of each other's existence

Motivation

Article's demand depends on the demand of **related** articles.

Price of similar articles

Stockouts

Demand Forecasting: Related Work

TRADITIONAL TIME SERIES MODELS

ARIMA, moving average, univariate time series models (e.g., [3]).

NEURAL SEQUENCE MODELS

RNNs, DeepAR [4], Seq2Seq, Transformer models.

GRAPH NEURAL NETWORKS

Spatio-temporal GNNs [2].

LIMITATIONS

Cold starts

Scalability

Independent demand predictions

Articles are not "aware" of each other's existence

Graph NNs in (Demand) Forecasting

- Domains with predefined graph structures
 - Traffic forecasting applications [5]
 - Molecular structures [6]
 - o Prominent architectures: DCRNN, Spatio-Temporal GCN, GraphWaveNet
- Demand forecasting in e-Commerce
 - Literature remains rather limited
 - Key challenges: high dimensionality, no pre-defined graph structure
 - Previous work combined GNN & LSTM for forecasting in online marketplaces [2]
 - Limitations: multiple-seller setting, point-based forecasts

Our Contributions

- End-to-end forecasting system
 - Based on DeepAR SOTA LSTM-based forecasting method [4]
 - Integrates Graph-based GNN encoder to account for article relationships
 - Enables probabilistic forecasting
- Generic graph construction approach
 - Does not require expert knowledge and uses data-driven approach
 - Based on article attribute similarity
 - Highly scalable

2. Methodology Graph Construction

Graph Construction [1/3]

- Build a graph based on article similarity
 - Each node represents an article
 - Connections based on cosine similarity
 - Attributes: size, color, category, etc.

$$\text{similarity}\left(\boldsymbol{A}_{i},\boldsymbol{A}_{j}\right):=\cos\left(\boldsymbol{X}_{i},\boldsymbol{X}_{j}\right)=\frac{X_{i}\cdot X_{j}}{\left|\left|X_{i}\right|\right|\left|\left|X_{j}\right|\right|}$$

Graph Construction [2/3]

- Build a graph based on article similarity
 - Each node represents an article
 - Connections based on cosine similarity
 - Attributes: size, color, category, etc.
 - Keep edges with similarity > cutoff

$$\text{similarity}\left(\boldsymbol{A}_{i},\boldsymbol{A}_{j}\right):=\cos\left(\boldsymbol{X}_{i},\boldsymbol{X}_{j}\right)=\frac{X_{i}\cdot X_{j}}{\left|\left|X_{i}\right|\right|\left|\left|X_{j}\right|\right|}$$

Graph Construction [3/3]

- Build a graph based on article similarity
 - Each node represents an article
 - Connections based on cosine similarity
 - Attributes: size, color, category, etc.
 - Keep edges with similarity > cutoff
- Nodes include article features
 - Static article attributes
 - Dynamic demand lags

2. Methodology Model Architecture

GNN Encoder

Model Architecture: Vanilla DeepAR

Model Architecture: GraphDeepAR

3. Experimental Results

Performance on adidas Data

Comparing two models:

- DeepAR (benchmark)
- GraphDeepAR (ours)

GraphDeepAR wins:

• 6/6 times

Mean financial uplift:

· 2.05%

Performance on Public Datasets

Dataset	Subset	Model	RMSE	MAE	WMAPE
Retail	All articles	DeepAR	204.68	51.53	0.43
		GraphDeepAR	196.13	50.35	0.42
	Cold starts	DeepAR	44.79	19.83	0.66
		GraphDeepAR	41.78	18.84	0.63
	Connected articles	DeepAR	207.12	52.34	0.42
		GraphDeepAR	198.46	51.12	0.41
	Top-100 articles	DeepAR	419.40	171.28	0.36
		GraphDeepAR	401.27	164.10	0.35
E-commerce	All articles	DeepAR	30.36	3.39	0.67
		GraphDeepAR	20.65	3.08	0.61
	Cold starts	DeepAR	8.66	2.62	0.79
		GraphDeepAR	8.72	2.62	0.79
	Connected articles	DeepAR	31.40	3.59	0.69
	Connected articles	GraphDeepAR	21.40	3.18	0.61
	Top-100 articles	DeepAR	164.68	42.78	0.98
		${\bf GraphDeepAR}$	110.50	29.60	0.68

Note: we define cold starts as articles with less than five demand lags at the time of the forecast. Connected articles are articles that have edges with other articles.

Mean RMSE uplift:

- 4% for retail
- 32% for e-commerce

Benefiting groups:

- connected articles
- top-100 articles

Running Time Difference

Dataset	Model	Training time	Inference time	Total difference	
Retail	DeepAR	10.80 min	0.14 min	160.96%	
	GraphDeepAR	$28.33 \min$	$0.22 \min$	100.9070	
E-commerce	DeepAR	90.28 min	3.26 min	154.64%	
	GraphDeepAR	$234.73 \min$	$3.46 \min$	104.0470	
adidas	DeepAR	55.92 min	20.69 min	120.28%	
	GraphDeepAR	$139.80 \min$	$28.96 \min$	120.2870	
	·	·	·	<u> </u>	

- Article similarity is calculated and stored before training
- Training is slower due to the need to backpropagate through graphs
- Inference speed of GraphDeepAR is comparable

Summary

- Incorporating article relationships in demand forecasting is challenging
- Our graph-based solution can address this challenge
 - Data-driven graph construction based on article attribute similarity
 - Integrates GNN encoder into the DeepAR forecasting model
 - Supports probabilistic forecasts
- Experimental results show that GraphDeepAR performs well
 - 2% financial uplift on adidas datasets
 - Up to 32% RMSE uplift on public datasets

Appendix

References

- 1. Huber, J., & Stuckenschmidt, H. (2020). Daily retail demand forecasting using machine learning with emphasis on calendric special days. *International Journal of Forecasting*, *36*(4), 1420-1438.
- 2. Gandhi, A., Aakanksha, Kaveri, S., & Chaoji, V. (2021, September). Spatio-temporal multi-graph networks for demand forecasting in online marketplaces. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases* (pp. 187-203). Cham: Springer International Publishing.
- 3. Box, G. E., & Cox, D. R. (1964). An analysis of transformations. *Journal of the Royal Statistical Society Series B:* Statistical Methodology, 26(2), 211-243
- 4. Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T. (2020). DeepAR: Probabilistic forecasting with autoregressive recurrent networks. *International Journal of Forecasting*, *36*(3), 1181-1191.
- 5. Yu, B., Yin, H., & Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. *arXiv preprint arXiv:1709.04875*.
- 6. Veličković, P. (2023). Everything is connected: Graph neural networks. *Current Opinion in Structural Biology*, 79, 102538.

Data Summary

- Two public datasets & one proprietary adidas dataset
- Contain time series with:
 - Article demand
 - Static features (e.g., color, size)
 - Time-varying features (e.g., week number, month number)

Dataset	No. articles	No. weeks	No. features
Retail	629	148	12
E-commerce	8,810	128	5
adidas	80,838	140	20

Importance of Article Relationships

- Out of stock status for the same article from other sellers
- Launch of competing articles
- Price change on a similar article by other sellers
- Sudden change in competitor's performance

Graph Illustration

Article graphs for *Retail* dataset (left) and *E-commerce* dataset (right).

Sampling Mechanism [1/2]

- Graph contains thousands of articles
 - Average number of neighbors is high
 - Aggregating neighbors data is costly

Sampling Mechanism [2/2]

- Graph contains thousands of articles
 - Average number of neighbors is high
 - Aggregating neighbors data is costly
- Solution: randomly sample neighbors
 - Different subset on each epoch
 - Helps scaling the solution

Time-Varying GNN Embeddings

Week 67 Week 75

Meta-Parameters (Retail Dataset)

Dataset	Component	Meta-parameter	DeepAR	GraphDeepAR
retail	Sequential model	No. layers	2	2
		Hidden size	[128, 128]	[128, 128]
		Cell type	LSTM	LSTM
		Dropout	0.2	0.2
		Context length	10	10
	GNN encoder	No. layers		2
		Hidden size	C	[16, 8]
		Cell type	* <u>~</u>	GCN
		Dropout	_	0.2
		Similarity cutoff	_	0.95
		Max no. neighbors	_	10
		Context length		10
	Training procedure	Max no. epochs	50	50
		Early stopping	5	5
		Learning rate	5×10^{-3}	5×10^{-3}
		Optimizer	Ranger	Ranger
		Loss function	t-distribution	t-distribution
		Batch sampler	Random	Synchronized

Example Predictions (Retail Dataset)

