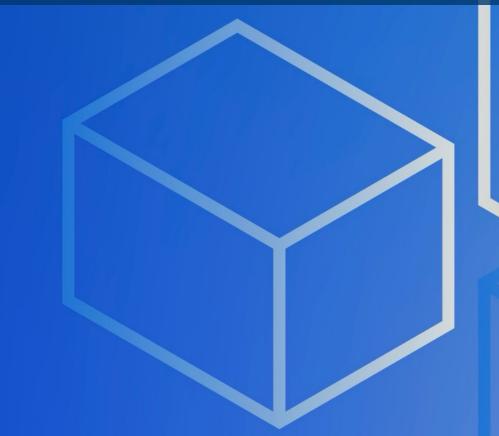


Improving Credit Scoring Models with Bias Correction Algorithms

Nikita Kozodoi, PhD

04/07/2024

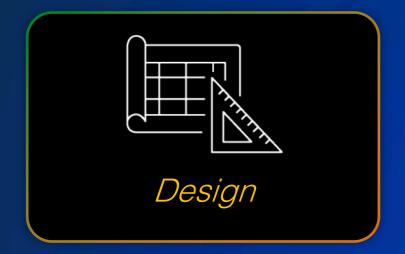


About Me

https://kozodoi.me

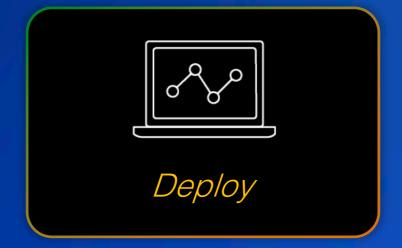
- Applied Scientist at Amazon Web Services
- Building GenAl solutions across industries
- Earned PhD in ML for Credit Risk Analytics
- Won 18 Kaggle competition medals

About My Team



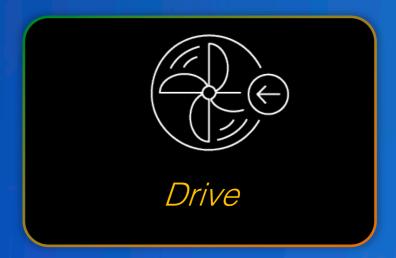
Design guidance:

- Select the GenAl use case with the highest business impact
- Design how to develop, train, and deploy it to production



<u>Deploy recommended</u> <u>solutions:</u>

 Develop and fine-tune a GenAl solution to meet your business objectives and demonstrate what's possible



Drive adoption:

 Accelerate stickiness and adoption with a path to production for your GenAl solution integrated into your application.

Presentation Outline

1. Background

- What is credit scoring?
- What are the business goals?

2. Problem Description

- Sampling bias illustration
- Bias impact on ML models

3. Approach

- Improving model evaluation
- Improving model training

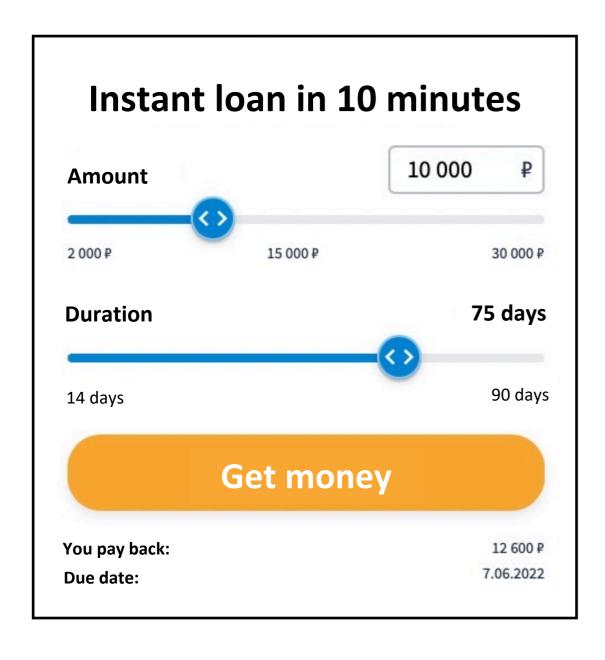
4. Results

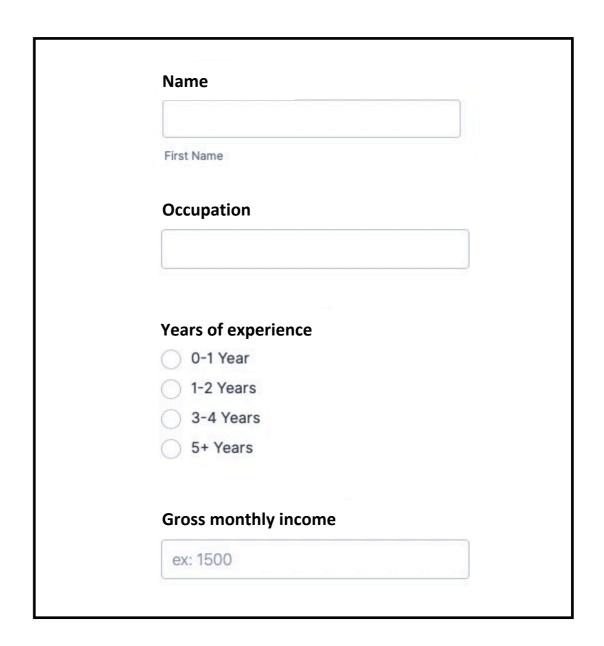
- Offline evaluation
- **Business** impact

Nikita Kozodoi

What is Credit Scoring?

Customer perspective:





3

What is Credit Scoring?

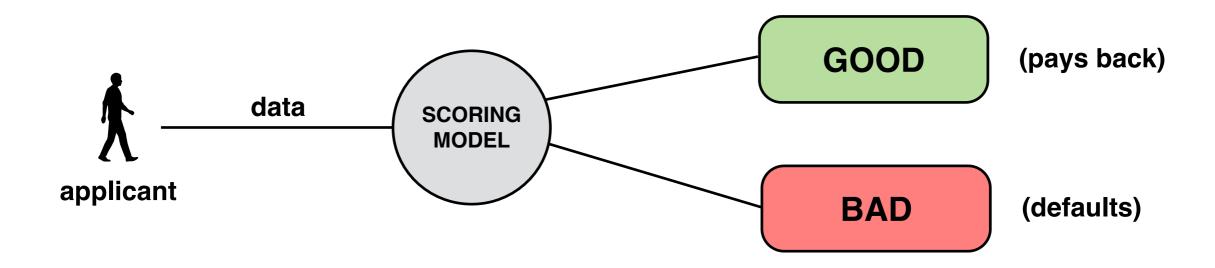
Customer perspective:

Image source: https://www.indusind.com/

What is Credit Scoring?

Business perspective:

- classification task of distinguishing BAD and GOOD loans
- scorecard model that predicts probability of default
- increasing reliance on Machine Learning (e.g., Wei et al. 2016)
 - consumer credit in the US exceeds \$4,325 billion¹
 - FinTechs account for 49.4% of consumer loan market²



¹ The Federal Reserve: Statistical Release on Consumer Credit (2021)

² Experian: FinTech vs. Traditional FI Trends (2019)

Business Goals

Goal: improving accuracy of credit scoring models

Costs:

- accepting BAD customer results in a high loss
 - business: loss = amount that the client does not pay back
 - customer: long-term financial difficulties
- rejecting GOOD customer results in a moderate loss
 - business: loss = potential interest and fees earned from the client
 - customer: limited access to finance

Decision

6

Project goal:

- maximize scorecard profitability
 - minimize BAD rate among accepts

		Accept	Reject
Outcome	GOOD	+ interest	- interest
	BAD	- amount	0

04/07/2024 1. Background Nikita Kozodoi

Presentation Outline

1. Background

- What is credit scoring?
- What are the business goals?

2. Problem Description

- Sampling bias illustration
- Bias impact on ML models

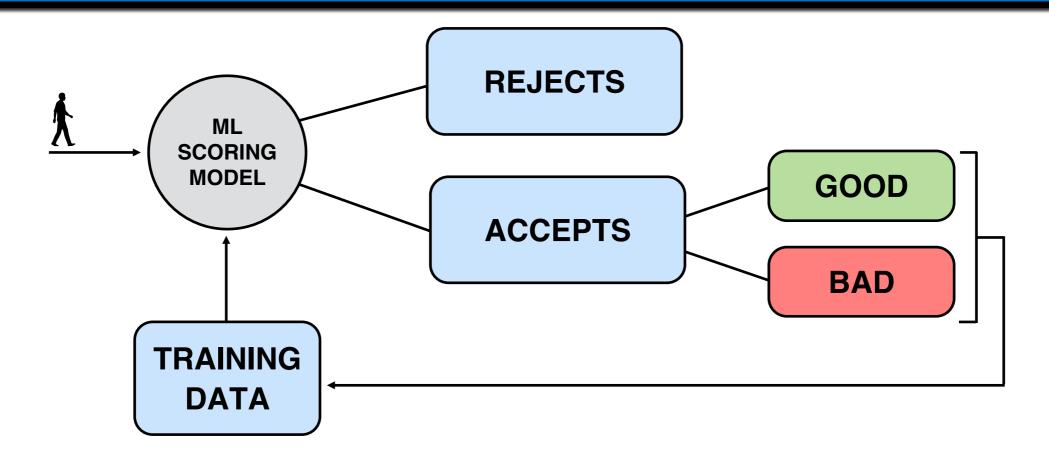
3. Approach

- Improving model evaluation
- Improving model training

4. Results

- Offline evaluation
- Business impact

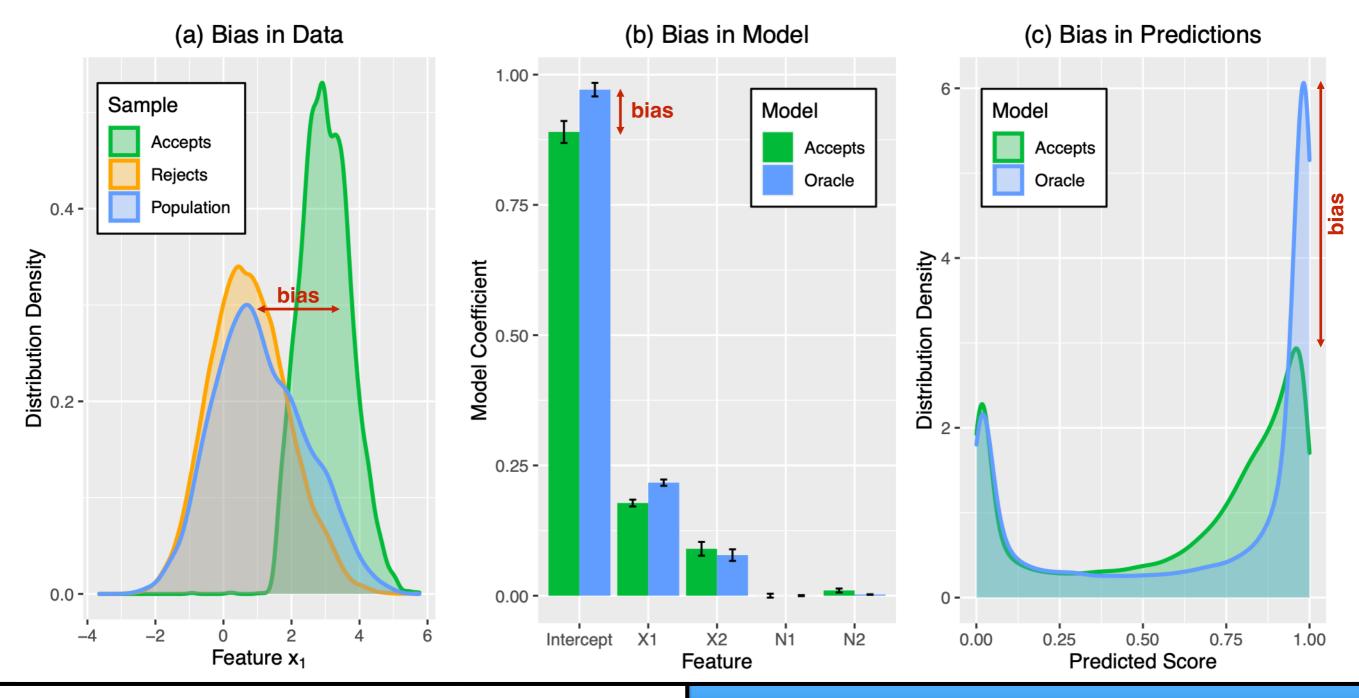
Loan Approval Process at Monedo



- scoring model filters incoming loan applications
 - ML model observes applicants' features and predicts P(GOOD)
 - top-ranked applicants are accepted and receive a loan
- training a model requires data with known outcomes
 - outcomes are only observed for previously accepted clients
 - labels of rejects are missing not at random (Crook et al. 2004)
 - historical data suffers from sampling bias

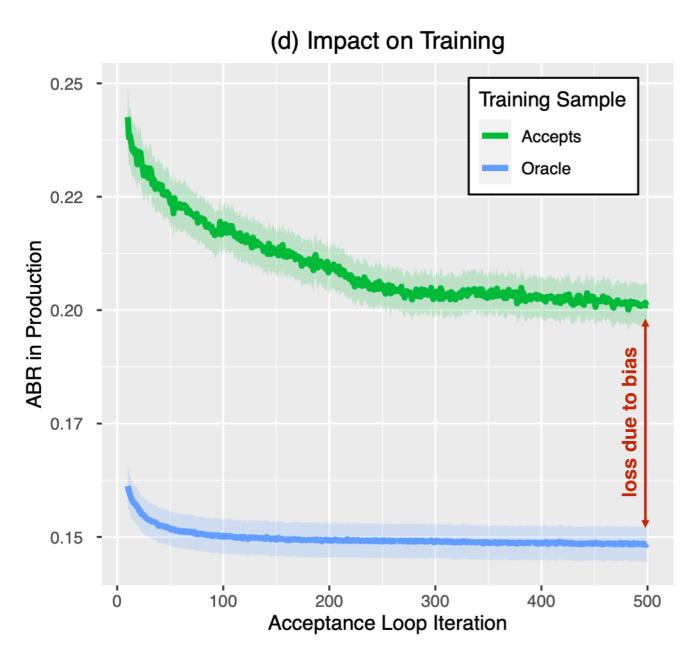
Sampling Bias Illustration

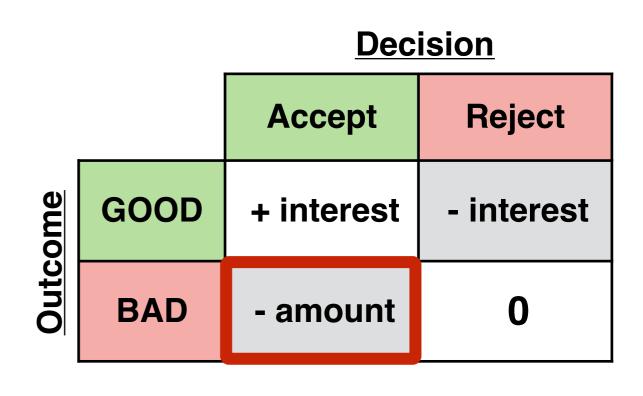
- sampling bias originates in the training data
- propagates to the model parameters
- and affects model predictions



Sampling Bias Consequences

training a model on a biased sample decreases its production performance

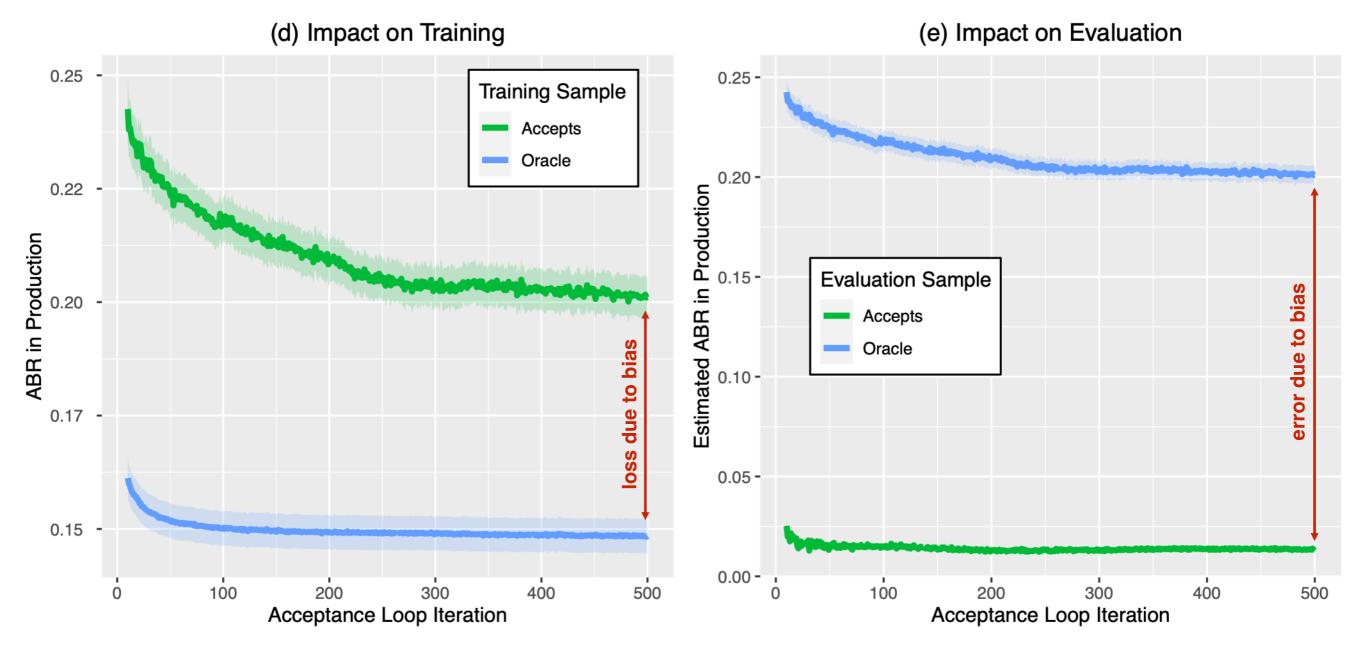




ABR = **BAD** rate when accepting top-30% applicants; lower is better

Sampling Bias Consequences

- training a model on a biased sample decreases its production performance
- evaluating a model on a biased sample provides a misleading estimate

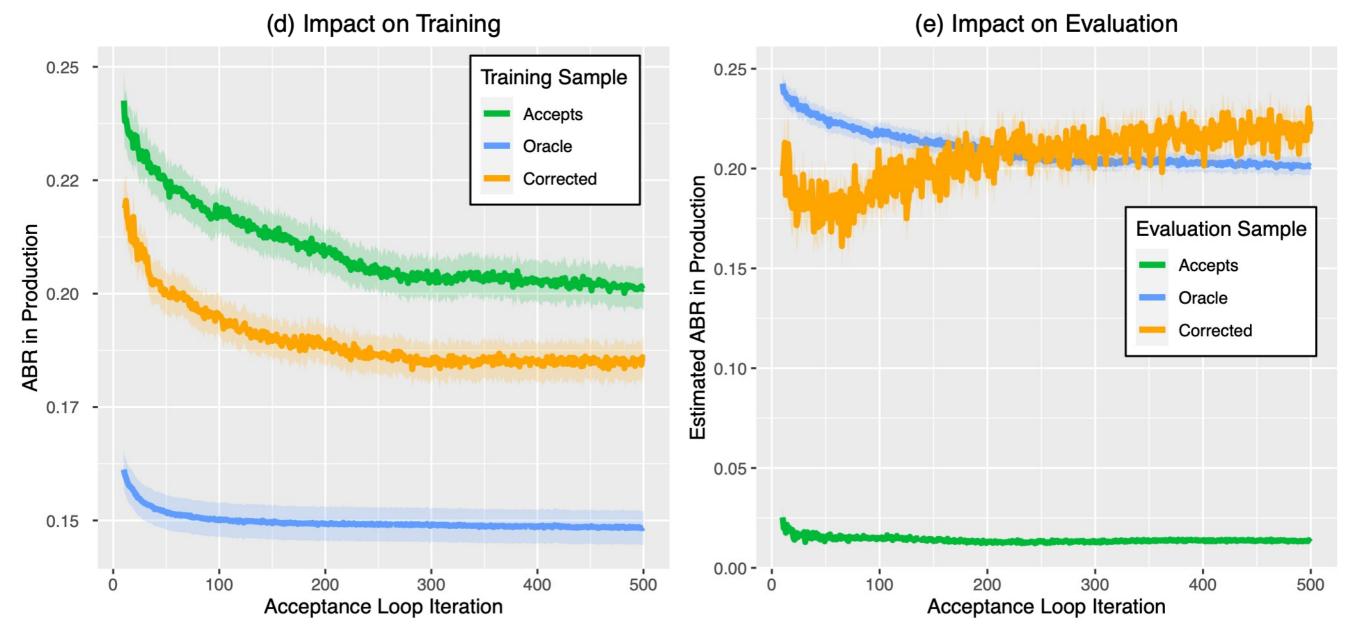


ABR = **BAD** rate when accepting top-30% applicants; lower is better

11

Potential Performance Gains

- bias correction can improve the model performance in production
- bias correction can provide a better estimate of production performance



ABR = BAD rate when accepting top-30% applicants; lower is better

Presentation Outline

1. Background

- What is credit scoring?
- What are the business goals?

2. Problem Description

- Sampling bias illustration
- Bias impact on ML models

3. Approach

- Improving model evaluation
- Improving model training

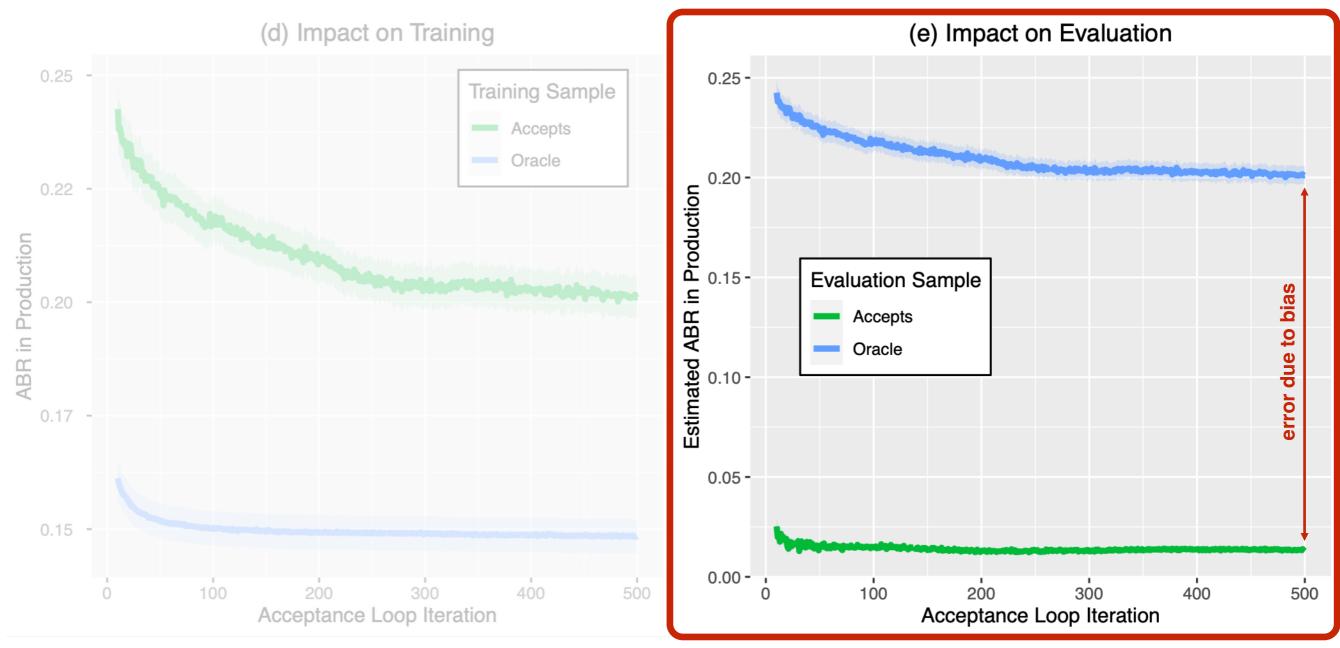
4. Results

- Offline evaluation
- Business impact

13

Bias Impact on Evaluation

- training a model on a biased sample decreases its production performance
- evaluating a model on a biased sample provides a misleading estimate



ABR = **BAD** rate when accepting top-30% applicants; lower is better

Evaluation under Sampling Bias

How to improve evaluation?

Collect unbiased sample

Adjust evaluation framework

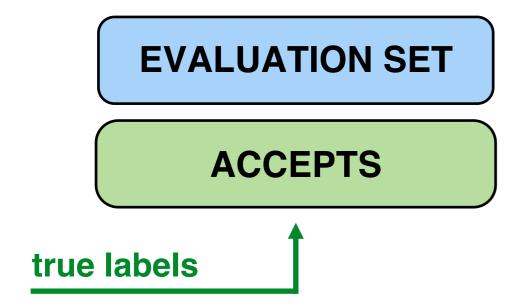
- completely avoids sampling bias
- requires issuing loans to random set of applicants without scoring
- **issue:** very costly

- use bias correction methods to account for distribution mismatch
- <u>issue:</u> labels of <u>rejects</u> are unknown

Standard Practice: Evaluate on Accepts

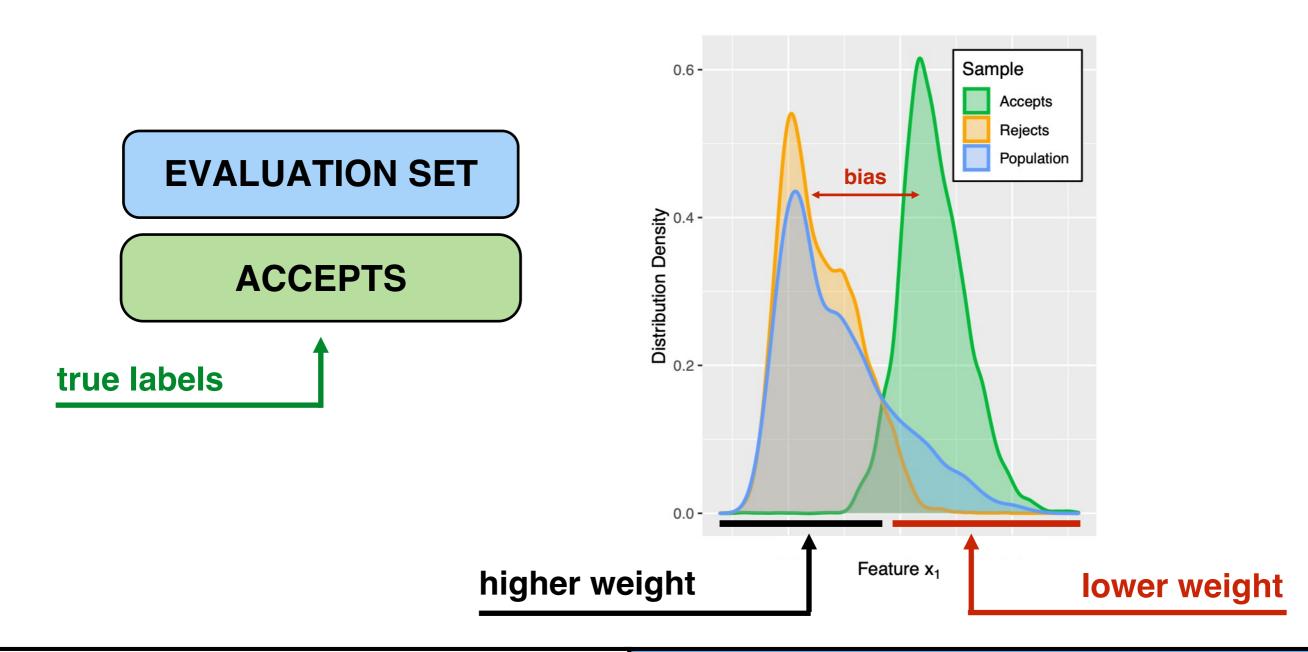
Idea:

evaluate metric M on evaluation set containing labeled accepts



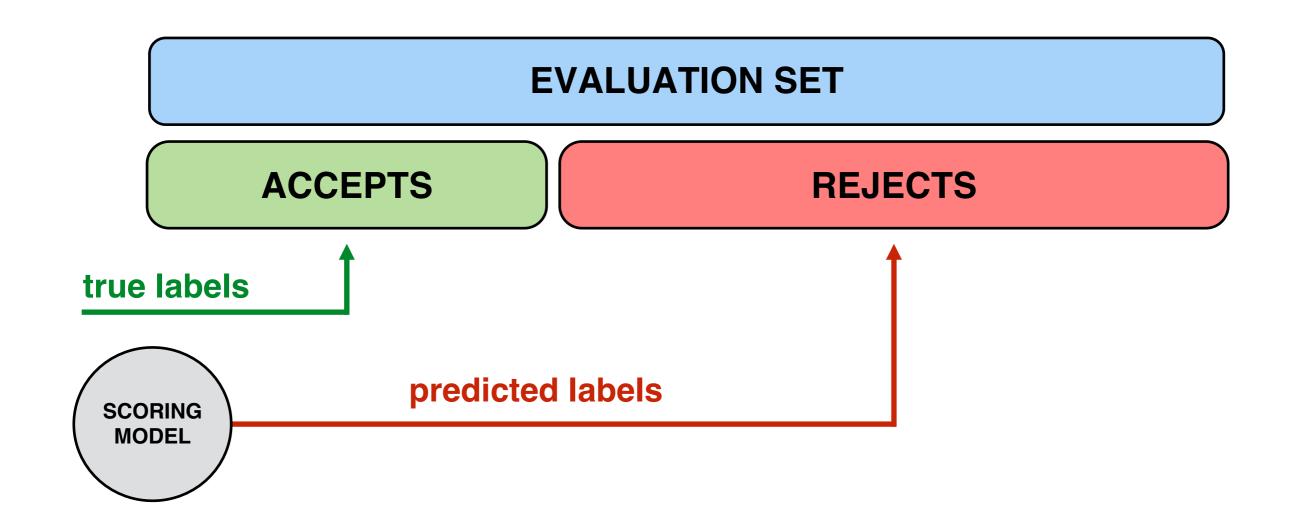
State-of-the-Art: Reweighting

- evaluate metric M on evaluation set containing labeled accepts
- reweigh the metric to focus on representative cases



Bayesian Evaluation (BE)

- evaluate metric M on evaluation set containing:
 - labeled accepts
 - pseudo-labeled rejects
- estimate prior P(BAD) for rejects using the current scorecard f(X)

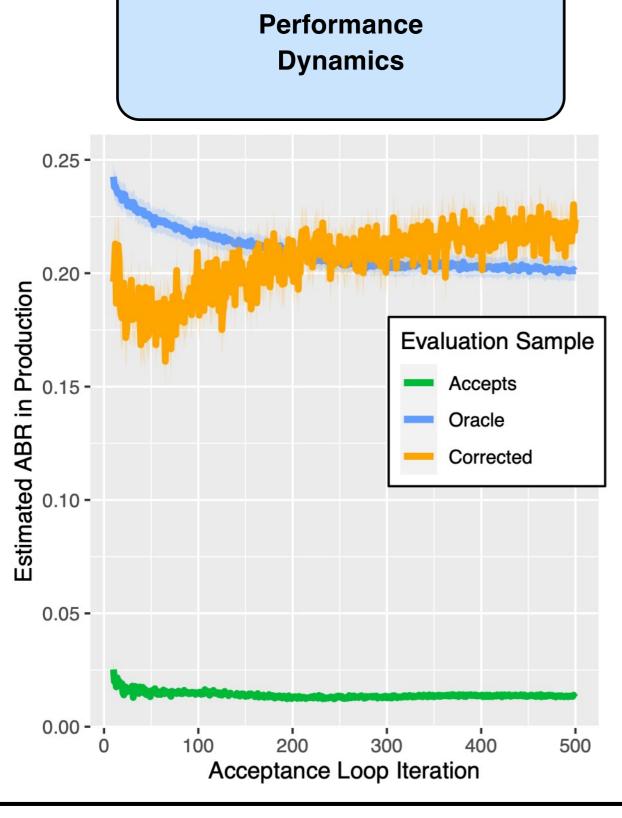


Bayesian Evaluation (BE)

- evaluate metric M on evaluation set containing:
 - labeled accepts
 - pseudo-labeled rejects
- estimate prior P(BAD) for rejects using the current scorecard f(X)

```
input: model f(X), evaluation sample S consisting of labeled accepts S^a = \{(\mathbf{X}^a, \mathbf{y}^a)\} and
              unlabeled rejects \mathbf{X}^r, prior \mathbf{P}(\mathbf{y}^r|X^r), evaluation metric M(f,S,\tau), meta-parameters
              j_{max}, \epsilon
   output: Bayesian evaluation metric BM(f, S, \tau)
1 j = 0; \Delta = \epsilon; E^c = \{\};
                                                                                                           // initialization
2 while (j \leq j_{max}) and (\Delta \geq \epsilon) do
    j = j + 1
   \mathbf{y}^r = \text{binomial}(1, \mathbf{P}(\mathbf{y}^r | \mathbf{X}^r)) ;
                                                                                        // generate labels of rejects
   S_i = \{ (\mathbf{X}^a, \mathbf{y}^a) \} \cup \{ (\mathbf{X}^r, \mathbf{y}^r) \} ;
                                                                                      // construct evaluation sample
    E_i^c = \sum_{i=1}^j M(f(X), S_i, \tau)/j;
                                                                                                                    // evaluate
   \Delta = E_j^c - E_{i-1}^c ;
                                                                                                      // check convergence
8 end
9 return BM(f, S, \tau) = E_i^c
```

BE: Simulation Results



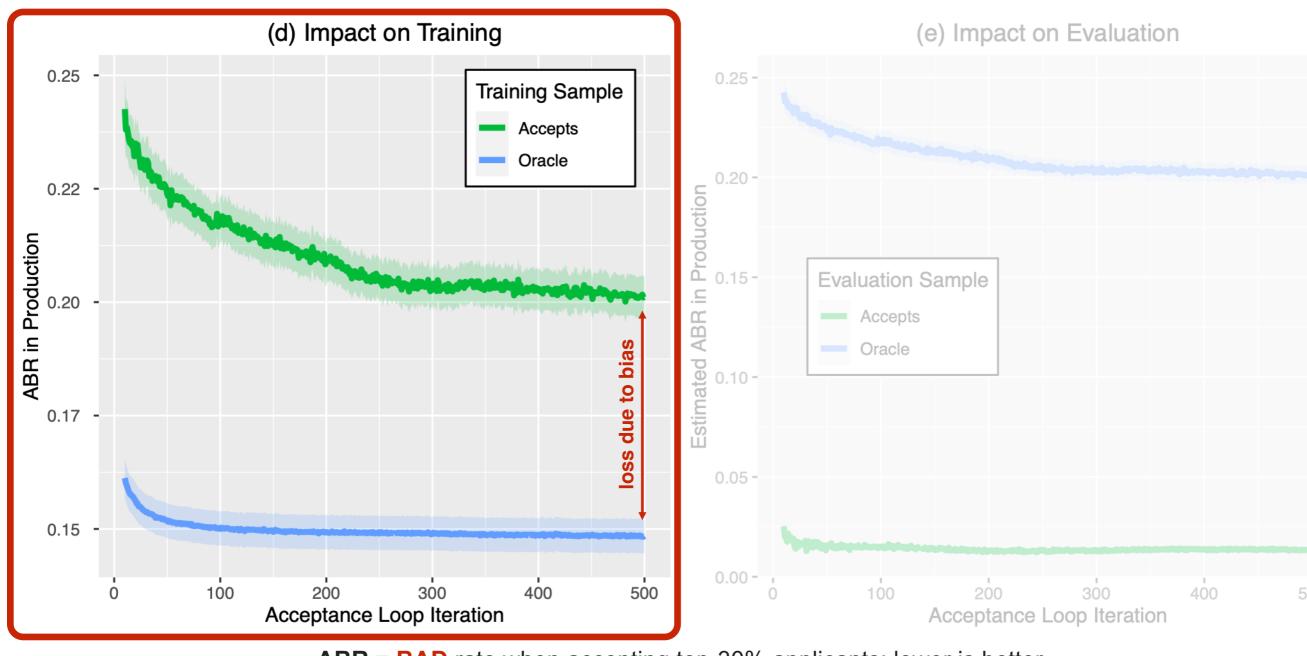
Aggregated Results

Metric	RMSE due to bias	Gains from BE
ABR	.2058	55.83%
BS	.0829	36.55%
AUC	.2072	67.57%
PAUC	.2699	70.80%

- BE improves performance estimates
- gains are statistically significant at 5%

Bias Impact on Training

- training a model on a biased sample decreases its production performance
- evaluating a model on a biased sample provides a misleading estimate



ABR = **BAD** rate when accepting top-30% applicants; lower is better

Training under Sampling Bias

How to improve training?

Collect unbiased sample

• **issue:** very costly

Data augmentation (label rejects)

- completely avoids
 predict labels of rejects
 sampling bias
 use combined data of
 - use combined data of accepts and rejects for model training
 - issue: high risk of error propagation

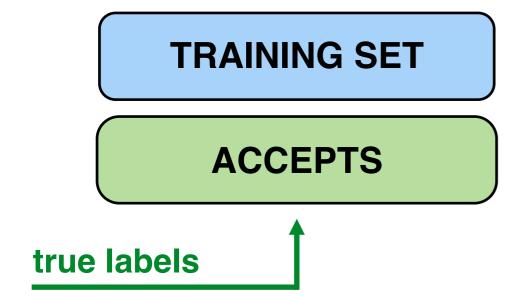
Extract information from rejects

- estimate distribution
 mismatch between
 accepts and rejects
- modify training procedure
- issue: hard in highdimensional data

Standard Practice: Train on Accepts

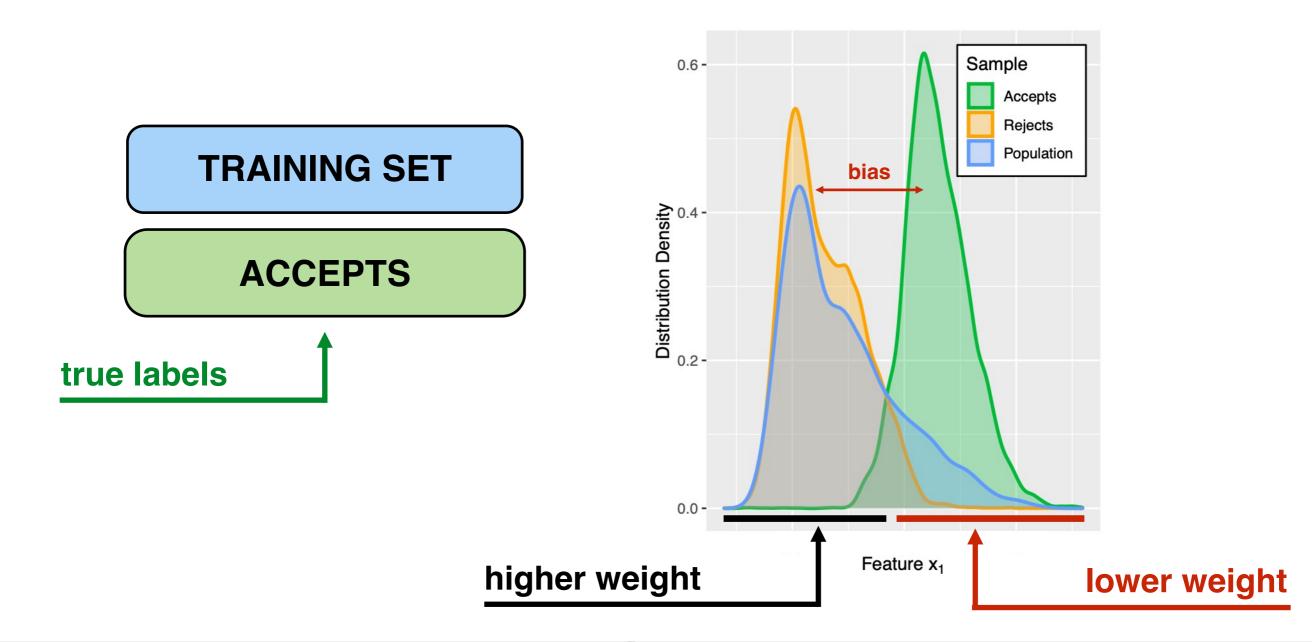
Idea:

• train model f(x) on training set containing labeled accepts



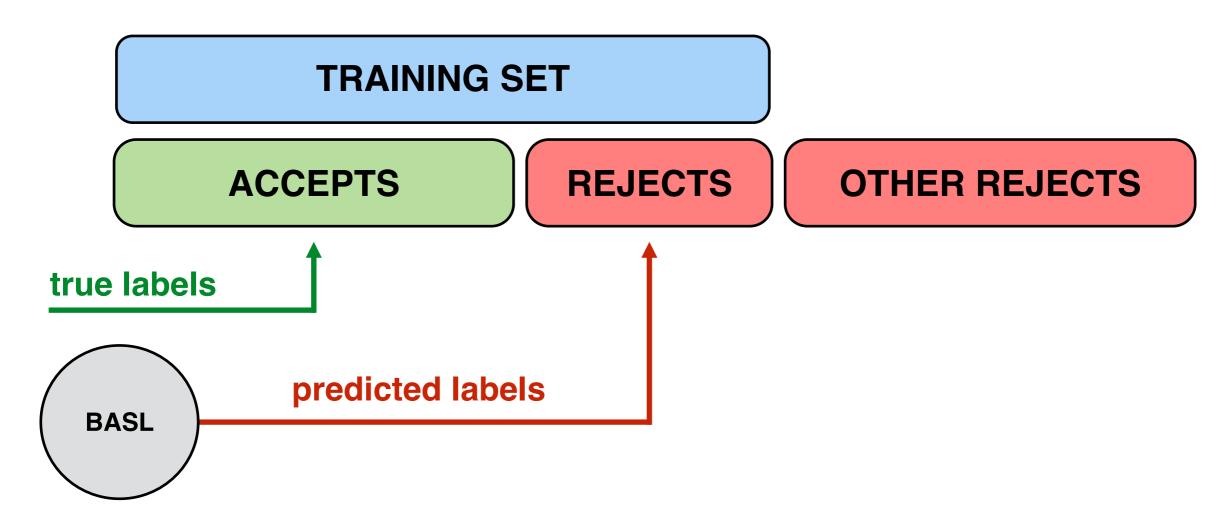
State-of-the-Art: Reweighting

- train model f(x) on training set containing labeled accepts
- reweigh model loss to focus on representative cases



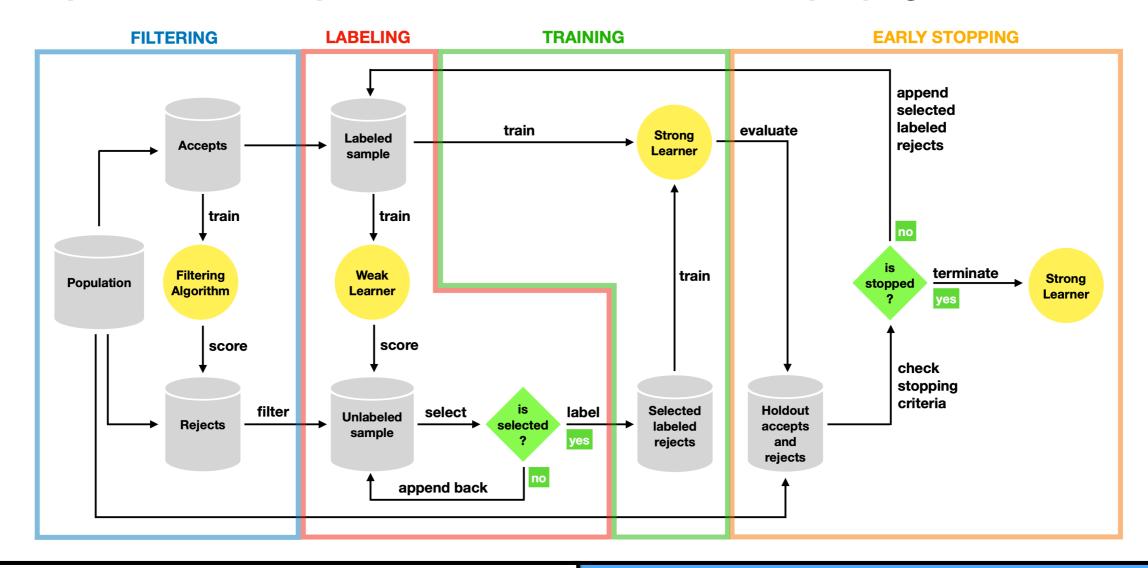
Bias-Aware Self-Learning (BASL)

- train model f(x) on augmented training set containing:
 - <u>labeled accepts</u>
 - selected pseudo-labeled rejects
- use modified self-learning framework (e.g., Triguero et al. 2013)
 - implement techniques to reduce the risk of error propagation

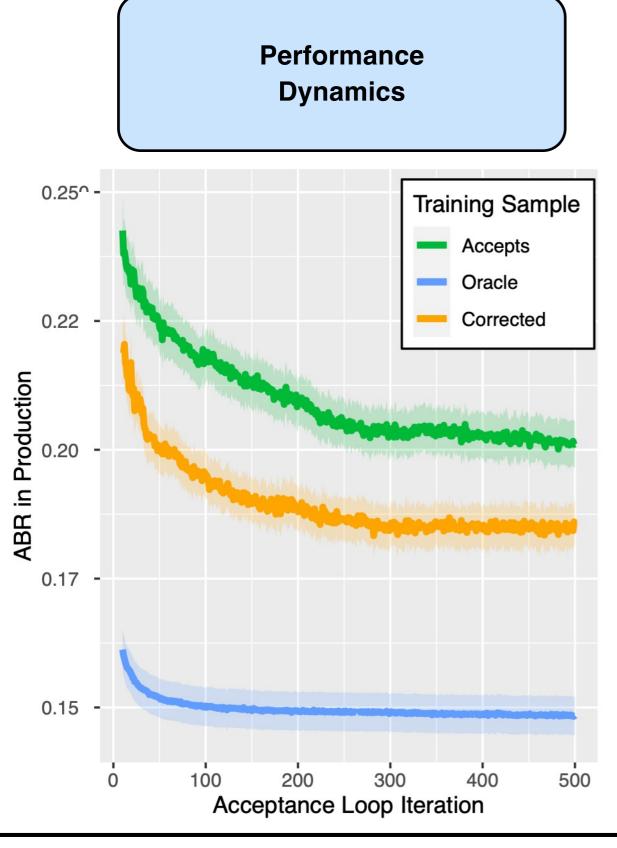


Bias-Aware Self-Learning (BASL)

- train model f(x) on augmented training set containing:
 - labeled accepts
 - selected pseudo-labeled rejects
- use modified self-learning framework (e.g., Triguero et al. 2013)
 - implement techniques to reduce the risk of error propagation



BASL: Simulation Results



Aggregated Results

Metric	Loss due to bias	Gains from BASL
ABR	.0547	36.86%
BS	.0404	45.28%
AUC	.0589	48.84%
PAUC	.0488	33.93%

- BASL improves model performance
- gains are statistically significant at 5%

Presentation Outline

1. Background

- What is credit scoring?
- What are the business goals?

2. Problem Description

- Sampling bias illustration
- Bias impact on ML models

3. Approach

- Improving model evaluation
- Improving model training

4. Results

- Offline evaluation
- Business impact

Offline Evaluation: Experimental Setup

Data description:

consumer loans issued by Monedo in Spain in 2017 - 2019

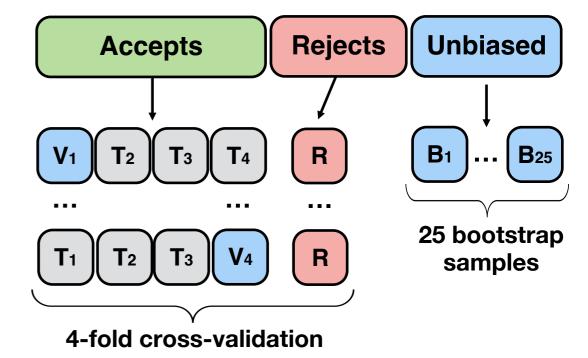
- contains labeled accepts and unlabeled rejects
- includes unbiased sample: loans from randomized trial

Data summary:

	Accepts	Rejects	Unbiased
No. clients	39,579	18,047	1,967
No. features	2,410	2,410	2,410
BAD* rate	39 %	-	66 %

^{*} missed payments for **3** consecutive months

Data organization:



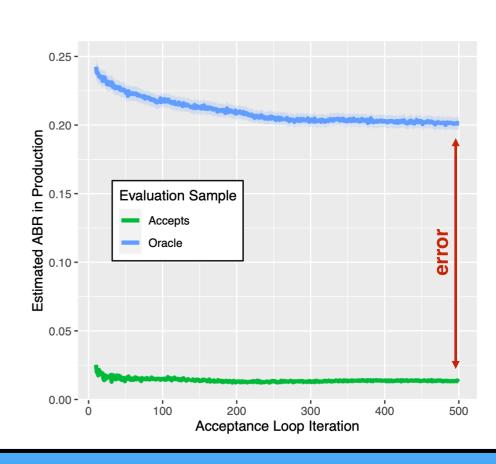
Experiment I: Improving Evaluation

Goal:

compare accuracy of evaluation methods

Methodology:

- build a scoring model and assess it on unbiased sample
 - four evaluation metrics: ABR, BS, AUC, PAUC
- evaluate the same model on historical data
 - Bayesian evaluation
 - benchmarks
- compute RMSE between the two estimates



Experiment II: Results

Evaluation Method	ABR	BS	AUC	PAUC
Standard practice	.0356	.0983	.1234	.0306
Doubly robust evaluation	.1167	.0506	-	-
Reweighting	.0315	.0826	.1277	.0348
Bayesian evaluation	.0130	.0351	.0111	.0073

- ABR = BAD rate at 30% acceptance
- **BS** = Brier Score
- AUC = area under the ROC curve
- PAUC = partial AUC at FNR in [0, 0.2]

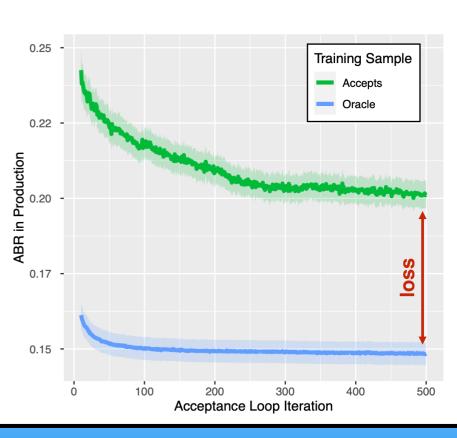
Experiment II: Improving Training

Goal:

compare performance of bias correction methods

Methodology:

- build a scoring model on accepts
- assess performance on unbiased sample
 - four evaluation metrics: ABR, BS, AUC, PAUC
- improve the model with bias correction methods
 - BASL
 - benchmarks



Experiment II: Results

Training Method	ABR	BS	AUC	PAUC
Standard practice	.2388	.1819	.7984	.6919
Label all rejects as BAD	.3141	.2347	.6676	.6384
Bias-removing autoencoder	.3061	.2161	.7304	.6373
Heckman model	.3018	.2124	.7444	.6397
Bureau score based labels	.2514	.1860	.7978	.6783
Hard cutoff augmentation	.2458	.1830	.8033	.6790
Parceling	.2396	.1804	.8038	.6885
Reweighting	.2346	.1840	.8040	.6961
Bias-Aware Self-Learning	.2211	.1761	.8166	.7075

- **ABR** = BAD rate at 30% acceptance
- **BS** = Brier Score
- AUC = area under the ROC curve
- PAUC = partial AUC at FNR in [0, 0.2]

Business Impact: Setup

Parameters:

- acceptance rate
- Ioan principal
- interest rate

Two markets:

- micro-loans
- installment loans

	Micro loans	Installment Ioans
Acceptance rate α	[20%, 40%]	[10%, 20%]
Loan principal A	\$375 (SD = \$100)	\$17,100 (SD = \$1,000)
Total interest i	17.33% (SD = 1%)	10.36% (SD = 1%)

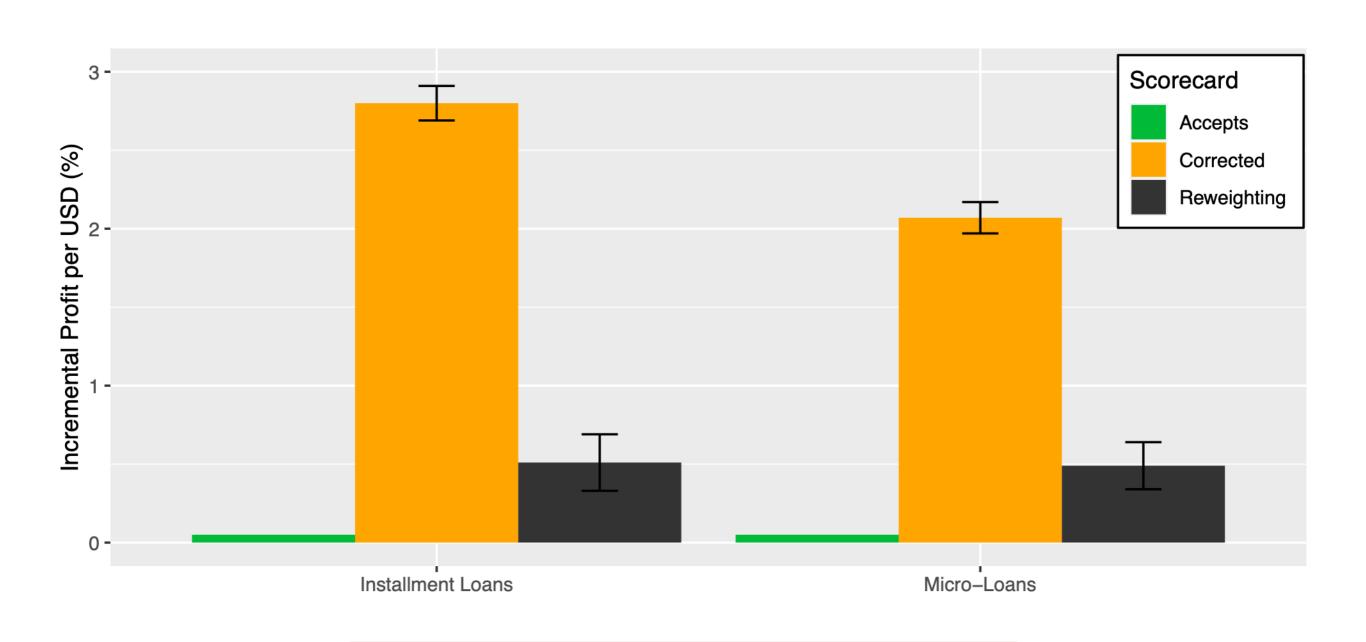
Calculations:

average profit per loan for each algorithm:

$$\pi = \frac{1}{100} \sum_{j=1}^{100} \left[(1 - ABR_j) \times A \times (1+i) - ABR_j \times A \times (1+i) - A \right]$$
GOOD clients
BAD clients

averaging over 100 values (4-fold CV x 25 bootstrap samples)

Business Impact: Results



Incremental gains:

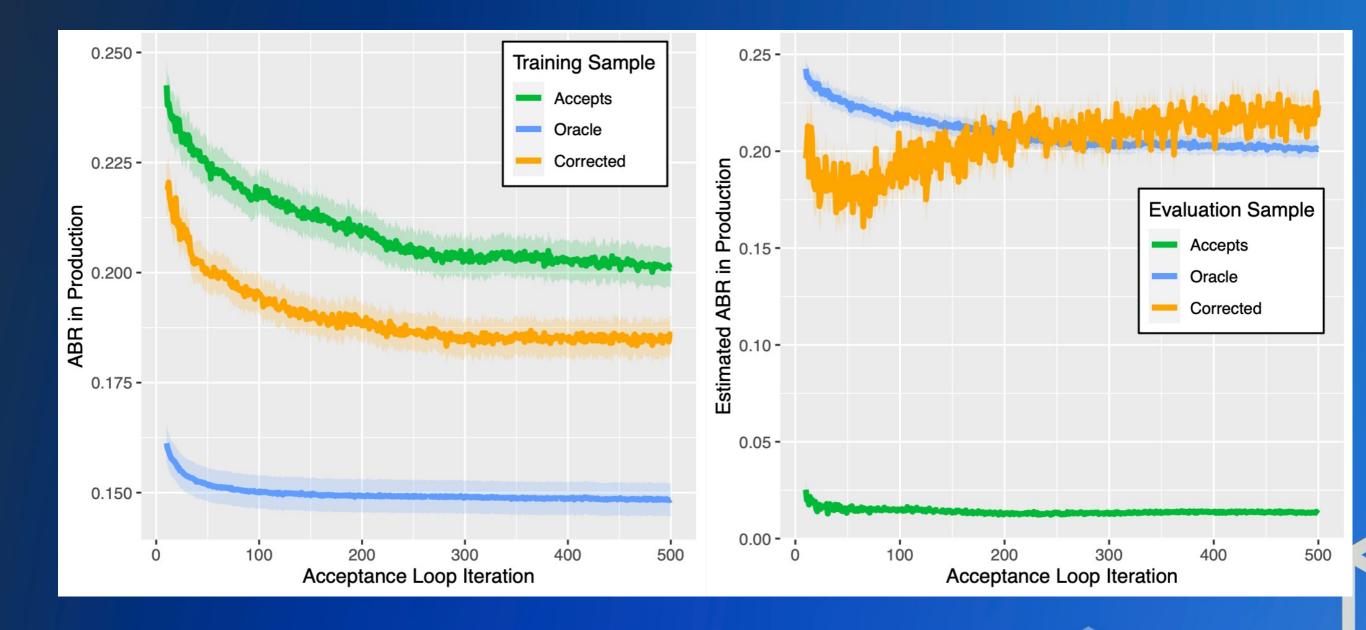
- installment loans: up to \$461.70 per loan
- micro-loans: up to \$7.78 per loan

From Offline to Online



Challenges:

- long delay before observing the metrics
- regulations regarding data on rejected clients



Incremental gains:

- installment loans: up to \$461.70 per loan
- micro-loans: up to \$7.78 per loan