

Kaggle Lessons that Work in Industry

Nikita Kozodoi, PhD Applied Scientist at AWS

30.05.2023

About Me

- Applied Scientist at AWS
- Earned 18 Kaggle competition medals

https://www.kaggle.com/kozodoi

About My Team

Identify, scope and implement highestvalue ML use cases to accelerate adoption

Global team of Data /Applied Scientists, ML Engineers and ML Strategists

Extensive expertise across a variety of verticals and solution areas

Agenda

- Motivation
- Lesson #1: Compressing your Data
- Lesson #2: Designing Good Validation Strategy
- Lesson #3: Selecting the Right Metric
- Summary

Motivation

Background

- Kaggle is one of the largest online ML communities
 - Offers courses, datasets, and more
 - Mostly known for ML competitions
 - Over 10 million users as of 2022

https://www.kaggle.com

Motivation

Kaggle competitors fight for every digit in model KPIs

#	Team	Members		Score
1	Kraków, Lublin i Zhabinka			0.81724
2	ikiri_DS	(48)		0.81241
3	circlecircle		@	0.81124
4	alijs & Evgeny			0.81086
5	Large Space Hypothesis			0.81041
6	七上八下	(1) (i) (ii) (iii)		0.81039
7	TenDots			0.81007
8	楼上神仙打架 ¯_(ツ) <i>_J¯</i>	(a) (b) (c)		0.80993
9	Vegetable chicken			0.80972
10	Quad Machine		@	0.80941

Average score difference is less than 0.001

Motivation

- Kaggle competitors fight for every digit in model KPIs
- Over time, people learn best practices for different tasks
 - Squeezing the last drop of model performance
 - Improving the training or processing speed
- Some of these lessons can be leveraged in industry

Lesson #1
Compressing your Data

https://mlcontests.com/state-of-competitive-machine-learning-2022/

10

Example:

- Tabular dataset does not fit into the RAM
- Scientist has to use a larger instance that costs more

ID	Product type	•••	Sales volume
1	"Book"	•••	100.00
2	"Game"	•••	50.00
3	"Book"	•••	80.00

~ 2 Gb

Problem:

working with large datasets is slow and requires a lot of compute

Idea:

reduce the data size using lossless compression

Goal:

decrease compute costs and enable faster experiments

- int/float: choose format depending on the range
- binary: convert to bool
- string: convert to category

	Memory used	Data range
int8	1 byte	[-128, 127]
int16	2 bytes	[-32768, 32767]
•••		
float32	4 bytes	[-3.4*10 ³⁸ , 3.4*10 ³⁸]
float64	8 bytes	[-1.7*10 ³⁰⁸ , 1.7*10 ³⁰⁸]

ID [int64]	Product type [str]	•••	Sales volume [float32]
1	"Book"	•••	100.00
2	"Game"	•••	50.00
3	"Book"	•••	80.00

Lossless data compression

ID [int16]	Product type [category]	•••	Sales volume [int32]
1	Book	•••	100
2	Game	•••	50
3	Book	•••	80

df = reduce_memory_usage(df)

100%| 71/71 [01:12<00:00, 1.02s/it]
Memory usage decreased from 1573 Mb to 233 Mb (85.21% reduction)</pre>

Lesson #2 Designing Good Validation Strategy

Example:

- Company sells products in market A
- Company enters market B with different properties
- Model performs well on historical data from A, but fails on data from B

Problem:

offline performance often doesn't match performance in production

Idea:

set up validation sample that mimics production as close as possible

Goal:

avoid overfitting to a non-representative validation set

- Use stratified splits for both classification and regression
 - Match expected distributions of multiple features
 - Bin continuous features and stratify based on bin ratios
- Regularly update partitioning to reflect data shifts
- Perform adversarial validation to check split quality

- Use stratified splits for both classification and regression
- Regularly update partitioning to reflect data shifts
 - Consider updating the data split with certain frequency
 - Helps to address data distribution shifts
- Perform adversarial validation to check split quality

- Use stratified splits for both classification and regression
- Regularly update partitioning to reflect data shifts
- Perform adversarial validation to check split quality
 - Combine validation set and new production data into one dataset
 - Train a classifier to distinguish between the data sources

Lesson #3 Optimizing the Right Metric

Example:

- In demand forecasting, over- and underprediction has different costs
 - Overprediction: costs of storing extra items at a warehouse
 - Underprediction: costs of unrealized sales opportunity

Problem:

ML metric optimized by the model doesn't reflect the business KPI

Idea:

aim at optimizing the KPI on which the solution is evaluated

Goal:

maximize relevant metric on every step of the modeling pipeline

- Modify the ML model to use custom business-inspired loss
 - Deep Learning: create a custom loss class with relevant calculations
 - Tree Models: provide a custom differentiable loss function

```
loss = \begin{cases} \alpha | \text{error}| & \text{if actual > prediction} \\ \beta | \text{error}| & \text{if actual \leq prediction} \end{cases}
```


- Modify the ML model to use custom business-inspired loss
- Use business-inspired KPI for tuning and model selection
- Post-process predictions to account for business logic
 - Set negative predictions to zero if relevant
 - Use calibration to get probabilistic predictions
 - Optimize thresholds in classification tasks

Bonus Lesson Lesson That Should Not be Learned

Avoid Heavy Ensembling

https://www.kaggle.com/c/ranzcr-clip-catheter-line-classification/discussion/226664

27

Take Aways

- Some lessons from competitive ML are useful in industry
 - Compressing your data
 - Designing good validation
 - Optimizing the right metric
- When starting ML projects, check recent Kaggle competitions
 - Look through discussions & notebooks for similar problems
 - Winners usually publish their code, including different tricks

Further References

Thank you!

Nikita Kozodoi, PhD Applied Scientist at AWS