Profit-Oriented Feature Selection in Credit Scoring Applications

Nikita Kozodoi^{1,2}, Stefan Lessmann¹, Konstantinos Papakonstantinou², and Bart Baesens³

- ¹ Humboldt University of Berlin, Berlin, Germany
 - ² Kreditech Holding, Hamburg, Germany
- ³ Catholic University of Leuven, Leuven, Belgium

nikita.kozodoi@hu-berlin.de

Presentation Structure

- 1. Background
- 2. Research Motivation
- 3. Related Literature
- 4. Empirical Experiments
- 5. Conclusions

Background

Credit scoring:

- the use of statistical models to support decision-making in the retail credit sector (Crook et al. 2007)
- classification task of distinguishing BAD and GOOD loans
- scorecard model that estimates probability of default

Background

Credit scoring:

- the use of statistical models to support decision-making in the retail credit sector (Crook et al. 2007)
- classification task of distinguishing BAD and GOOD loans
- scorecard model that estimates probability of default

Feature Selection:

- removing redundant and irrelevant features to improve the performance of the scorecard and its interpretability
- helps reducing costs of gathering and storing customer data
- facilitates comprehensible models enforced by regulation

Research Motivation

Standard FS approaches:

- filters, wrappers and embedded methods (Guyon et al. 2006)
- using statistical criteria to select features:

Research Motivation

Credit scoring literature:

- using profit-driven indicators instead of standard measures improves scorecard profitability (Finlay 2010, Verbraken et al. 2014)
- research on profit-driven FS in credit scoring is limited to the embedded SVM framework (Maldonado et al. 2015, 2017)
- however, SVM perform poorly compared to other algorithms in credit scoring task (Lessmann et al. 2015)

Research Motivation

Credit scoring literature:

- using profit-driven indicators instead of standard measures improves scorecard profitability (Finlay 2010, Verbraken et al. 2014)
- research on profit-driven FS in credit scoring is limited to the embedded SVM framework (Maldonado et al. 2015, 2017)
- however, SVM perform poorly compared to other algorithms in credit scoring task (Lessmann et al. 2015)

Therefore, developing a universal profit-driven feature selection framework would contribute to research

Profit Scoring Measures

Measure	Reference	Parameters
R-EMPCS	Garrido et al. 2018	LGD distribution; ROI; shock
EMPCS with data costs	Maldonado et al. 2017	expected LGD; ROI; aquisition costs
EMPCS	Verbraken et al. 2014	LGD distribution; ROI
Expected Costs	Bahnsen et al. 2014	Mean LGD; ROI; loan amount
Profit Contribution	Finlay 2010	LGD, gross payments, profit contribution
EMC	Abdou et al. 2009	ratio of missclassification costs
•••	•••	•••

- Literature suggests different measures to evaluate profitability
- Family of EMPCS measures are state-of-the-art
- Hence, we will rely on EMPCS for feature selection

Expected Maximum Profit for Credit Scoring

- Inspired by (Verbraken, Verbeke & Baesens, 2013)
- Applied to credit scoring (Verbraken et al., 2014)

Interpretation

incremental profit from applying the scorecard

		Predicted Class		
		BAD	GOOD	
Real Class	BAD		0	
Real	GOOD		0	

basic scenario: all loans are granted

		Predicted Class		
		BAD GOOD		
Real Class	BAD	В	0	
Real	GOOD		0	

• **B** = expected loss in case of default

		Predicted Class		
		BAD GOOD		
Real Class	BAD	В	0	
Real	GOOD	-C	0	

- **B** = expected loss in case of default
- **C** = return on investment

Loss Distribution

Return on Investment

• ROI =
$$\frac{\text{total interest}}{\text{principal}}$$

-C

11/20

Assumed to be constant for all loans

$$EMPCS = \int_0^1 \left[B \cdot \pi_0 F_0(t) - C \cdot \pi_1 F_1(t) \right] \cdot h(B) d(B)$$

- **B** = expected loss in case of default
- **C** = return on investment
- π_i = prior probabilities of **BAD** and **GOOD**
- h(B) = density function
- $F_i(t)$ = model-based cumulative fractions of **BAD** and **GOOD**
- t = cutoff value

Empirical Experiments

Experiment #1:

- goal: check correlation between EMPCS and standard performance measures
- research question: is maximizing EMPCS different from optimizing traditional measures?

Experiment #2:

- goal: benchmark performance of the EMPCS-maximizing feature selection compared to conventional strategies
- research question: does profit-driven feature selection lead to scorecards with higher expected profit?

Data Library

Data:

ten credit scoring data sets

Data Label	Sample Size	Num. Features	Default Rate
australian	690	42	0.4449
german	1,000	61	0.3000
thomas	$1,\!225$	28	0.2637
bene1	$3,\!123$	83	0.3333
hmeq	$5,\!960$	20	0.1995
bene2	$7{,}190$	28	0.3000
uk	30,000	51	0.0400
lendingclub	$43,\!344$	206	0.1351
pakdd	50,000	373	0.2608
gmsc	150,000	68	0.0668

- Cross-validate models with different feature subsets
- Compute rank correlations between evaluation measures
- High correlation = measures choose the same feature sets

- Cross-validate models with different feature subsets
- Compute rank correlations between evaluation measures
- High correlation = measures choose the same feature sets

Measure	AUC ROC	H-measure	Accuracy	Brier Score	EMPCS
AUC ROC	1				
H-measure	0.7111	1			
Accuracy	0.1236	0.3795	1		
Brier Score	-0.6753	-0.8359	-0.3744	1	
EMPCS	0.2349	0.6941	0.4521	-0.6022	1

- Cross-validate models with different feature subsets
- Compute rank correlations between evaluation measures
- High correlation = measures choose the same feature sets

Measure	AUC ROC	H-measure	Accuracy	Brier Score	EMPCS
AUC ROC	1				
H-measure	0.7111	1			
Accuracy	0.1236	0.3795	1		
Brier Score	-0.6753	-0.8359	-0.3744	1	
EMPCS	0.2349	0.6941	0.4521	-0.6022	1

Optimizing EMPCS results in a different ranking of feature subsets compared to standard measures

DATA

Training (70%)

Validation (30%)

DATA

Training (70%)

Validation (30%)

Feature selection:

- Sequential forward selection
- Sequential backward selection
- Genetic algorithm

Objective function:

- AUC ROC
- EMPCS

4-fold CV

DATA

Training (70%)

Validation (30%)

Feature selection:

- Sequential forward selection
- Sequential backward selection
- Genetic algorithm

Objective function:

- AUC ROC
- EMPCS

Evaluate the models

4-fold CV

Results: Mean AUC Rank

12.09.2018 4. Experiments Nikita Kozodoi 17/20

Results: Mean EMPCS Rank

12.09.2018 4. Experiments Nikita Kozodoi 18/20

Results: Mean EMPCS Rank

Conclusions & Next Steps

Conclusions:

- using EMPCS for feature selection increases the expected profitability of the scorecards
- results emphasize importance of using business-inspired indicators on the feature selection stage

Next Steps:

- extending profit-driven framework to other modeling stages
- benchmarking a rich set of EMPCS-based wrappers and filters
- applying the profit-oriented approach to other business areas

Discussion & Questions

Thank you for your attention!

12.09.2018 Brussels Nikita Kozodoi 20/20